RESUMO
BACKGROUND: Circular RNAs (circRNAs), which are a new type of single-stranded circular RNA, have significant involvement in progression of many diseases, including tumors. Currently, multiple circRNAs have been identified in hepatocellular carcinoma (HCC). Our study aims to investigate the function and mechanism of circDCAF8 in HCC. METHODS: The expression of circDCAF8 (hsa_circ_0014879) in HCC and para-carcinoma tissue samples was determined using quantitative real-time polymerase chain reaction (qRT-PCR). The biological function of circDCAF8 in HCC was confirmed by experiments conducted both in vitro and in vivo. And the relationship between circDCAF8, miR-217 and NAP1L1 was predicted by database and verified using qRT-PCR, RNA-binding protein immunoprecipitation (RIP) and dual-luciferase reporter assays. Exosomes isolated from HCC cells were utilized to assess the connection of exosomal circDCAF8 with HCC angiogenesis and regorafenib resistance. RESULTS: CircDCAF8 is upregulated in HCC tissues and cell lines, and is linked to an unfavourable prognosis for HCC patients. Functionally, circDCAF8 was proved to facilitate proliferation, migration, invasion and Epithelial-Mesenchymal Transformation (EMT) in HCC cells. Animal examinations also validated the tumor-promoting characteristics of circDCAF8 on HCC. Besides, exosomal circDCAF8 promoted angiogenesis in HUVECs. Mechanistically, circDCAF8 interacted with miR-217 and NAP1L1 was a downstream protein of miR-217. CircDCAF8 promoted NAP1L1 expression by sponging miR-217. In addition, exosomes may transfer circDCAF8 from regorafenib-resistant HCC cells to sensitive cells, where it would confer a resistant phenotype. CONCLUSION: CircDCAF8 facilitates HCC proliferation and metastasis via the miR-217/NAP1L1 axis. Meanwhile, circDCAF8 can promote angiogenesis and drive resistance to regorafenib, making it a viable therapeutic target for HCC patients.
Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Exossomos , Neoplasias Hepáticas , MicroRNAs , Neovascularização Patológica , Compostos de Fenilureia , Piridinas , RNA Circular , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Exossomos/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neovascularização Patológica/genética , Animais , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Linhagem Celular Tumoral , Piridinas/farmacologia , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Masculino , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Camundongos , Camundongos Endogâmicos BALB C , Feminino , Sequência de Bases , Células Endoteliais da Veia Umbilical Humana/metabolismo , Pessoa de Meia-Idade , AngiogêneseRESUMO
Human cytochrome P450 3A4 (hCYP3A4), one of the most important drug-metabolizing enzymes, catalyze the metabolic clearance of â¼50% therapeutic drugs. CYP3A4 inhibitors have been used for improving the in vivo efficacy of hCYP3A4-substrate drugs. However, most of existing hCYP3A4 inhibitors may trigger serious adverse effects or undesirable effects on endogenous metabolism. This study aimed to discover potent and orally active hCYP3A4 inhibitors from chalcone derivatives and to test their anti-hCYP3A4 effects both in vitro and in vivo. Following three rounds of screening and structural optimization, the isoquinoline chalcones were found with excellently anti-hCYP3A4 effects. SAR studies showed that introducing an isoquinoline ring on the A-ring significantly enhanced anti-CYP3A4 effect, generating A10 (IC50 = 102.10 nM) as a promising lead compound. The 2nd round of SAR studies showed that introducing a substituent group at the para position of the carbonyl group on B-ring strongly improved the anti-CYP3A4 effect. As a result, C6 was identified as the most potent hCYP3A4 inhibitor (IC50 = 43.93 nM) in human liver microsomes (HLMs). C6 also displayed potent anti-hCYP3A4 effect in living cells (IC50 = 153.00 nM), which was superior to the positive inhibitor ketoconazole (IC50 = 251.00 nM). Mechanistic studies revealed that C6 could potently inhibit CYP3A4-catalyzed N-ethyl-1,8-naphthalimide (NEN) hydroxylation in a competitive manner (Ki = 30.00 nM). Moreover, C6 exhibited suitable metabolic stability in HLMs and showed good safety profiles in mice. In vivo tests demonstrated that C6 (100 mg/kg, orally administration) significantly increased the AUC(0-inf) of midazolam by 3.63-fold, and strongly prolonged its half-life by 1.66-fold compared with the vehicle group in mice. Collectively, our findings revealed the SARs of chalcone derivatives as hCYP3A4 inhibitors and offered several potent chalcone-type hCYP3A4 inhibitors, while C6 could serve as a good lead compound for developing novel, orally active CYP3A4 inhibitors with improved druglikeness properties.
RESUMO
Cytochrome P450 3A4 (CYP3A4), a prominent member of the P450 enzyme superfamily, plays a crucial role in metabolizing various xenobiotics, including over 50% of clinically significant drugs. Evaluating CYP3A4 inhibition before drug approval is essential to avoiding potentially harmful pharmacokinetic drug-drug interactions (DDIs) and adverse drug reactions (ADRs). Despite the development of several CYP inhibitor prediction models, the primary approach for screening CYP inhibitors still relies on experimental methods. This might stem from the limitations of existing models, which only provide deterministic classification outcomes instead of precise inhibition intensity (e.g., IC50) and often suffer from inadequate prediction reliability. To address this challenge, we propose an uncertainty-guided regression model to accurately predict the IC50 values of anti-CYP3A4 activities. First, a comprehensive data set of CYP3A4 inhibitors was compiled, consisting of 27,045 compounds with classification labels, including 4395 compounds with explicit IC50 values. Second, by integrating the predictions of the classification model trained on a larger data set and introducing an evidential uncertainty method to rank prediction confidence, we obtained a high-precision and reliable regression model. Finally, we use the evidential uncertainty values as a trustworthy indicator to perform a virtual screening of an in-house compound set. The in vitro experiment results revealed that this new indicator significantly improved the hit ratio and reduced false positives among the top-ranked compounds. Specifically, among the top 20 compounds ranked with uncertainty, 15 compounds were identified as novel CYP3A4 inhibitors, and three of them exhibited activities less than 1 µM. In summary, our findings highlight the effectiveness of incorporating uncertainty in compound screening, providing a promising strategy for drug discovery and development.
Assuntos
Citocromo P-450 CYP3A , Aprendizado Profundo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Reprodutibilidade dos Testes , Incerteza , Interações Medicamentosas , Sistema Enzimático do Citocromo P-450 , Inibidores Enzimáticos/farmacologiaRESUMO
Here, we report a novel technology for the fabrication of copper-electroplating-modified liquid metal microelectrodes. This technology overcomes the complexity of the traditional fabrication of sidewall solid metal electrodes and successfully fabricates a pair of tiny stable solid-contact microelectrodes on both sidewalls of a microchannel. Meanwhile, this technology also addresses the instability of liquid metal electrodes when directly contacted with sample solutions. The fabrication of this microelectrode depends on controllable microelectroplating of copper onto the gallium electrode by designing a microelectrolyte cell in a microfluidic chip. Using this technology, we successfully fabricate various microelectrodes with different microspacings (from 10 µm to 40 µm), which were effectively used for capacitive sensing, including droplet detection and oil particle counting.
Assuntos
Gálio , Técnicas Analíticas Microfluídicas , Cobre , Galvanoplastia , Microeletrodos , MicrofluídicaRESUMO
Postoperative distant metastasis and high recurrence rate causes a dilemma in treating triple-negative breast cancer (TNBC) owing to its unforeseeable invasion into various organs or tissues. The wealth of nutrition provided by vascular may facilitate the proliferation and angiogenesis of cancer cells, which further enhance the rates of postoperative metastasis and recurrence. Chemotherapy, as a systemic postoperative adjuvant therapy, is generally applied to diminish recurrence and metastasis of TNBC. Herein, an halofuginone-silver nano thermosensitive hydrogel (HTPM&AgNPs-gel) was prepared via a physical swelling method. The in vitro anticancer efficacy of HTPM&AgNPs-gel was analyzed by investigating cell proliferation, migration, invasion, and angiogenesis capacity. Furthermore, the in vivo anti-cancer activity of HTPM&AgNPs-gel was further appraised through the tumor suppression, anti-metastatic, anti-angiogenic, and anti-inflammatory ability. The optimized HTPM&AgNPs-gel, a thermosensitive hydrogel, showed excellent properties, including syringeability, swelling behavior, and a sustained release effect without hemolysis. In addition, HTPM&AgNPs-gel was confirmed to effectively inhibit the proliferation, migration, invasion, and angiogenesis of MDA-MB-231 cells. An evaluation of the in vivo anti-tumor efficacy demonstrated that HTPM&AgNPs-gel showed a stronger tumor inhibition rate (68.17%) than did HTPM-gel or AgNPs-gel used alone and exhibited outstanding biocompatibility. Notably, HTPM&AgNPs-gel also inhibited lung metastasis induced by residual tumor tissue after surgery and further blocked angiogenesis-related inflammatory responses. Taken together, the suppression of inflammation by interdicting the blood vessels adjoining the tumor and inhibiting angiogenesis is a potential strategy to attenuate the recurrence and metastasis of TNBC. HTPM&AgNPs-gel is a promising anticancer agent for TNBC as a local postoperative treatment.
Assuntos
Antineoplásicos , Proliferação de Células , Hidrogéis , Piperidinas , Quinazolinonas , Prata , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Hidrogéis/administração & dosagem , Hidrogéis/química , Animais , Feminino , Prata/química , Prata/administração & dosagem , Humanos , Linhagem Celular Tumoral , Piperidinas/farmacologia , Piperidinas/administração & dosagem , Piperidinas/química , Proliferação de Células/efeitos dos fármacos , Quinazolinonas/química , Quinazolinonas/administração & dosagem , Quinazolinonas/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Endogâmicos BALB C , Camundongos , Movimento Celular/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Neovascularização Patológica/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos NusRESUMO
Canine mammary tumors (CMT) can severely compromise the life quality of the affected dogs through local recurrence, distant metastases and ultimately succumb to death. Recently, more attention has been given to the potential antimetastatic effect of maduramicin (MAD) on breast cancer. However, its poor aqueous solubility and toxicity to normal tissues limit its clinical application. Therefore, to address the drawbacks of MAD and enhance its anticancer and antimetastatic effects, MAD-loaded TPGS polymeric micelles (MAD-TPGS) were prepared by a thin-film hydration technique. The optimized MAD-TPGS exhibited excellent size distribution, stability and improved water solubility. Cellular uptake assays showed that TPGS polymer micelles could enhance drug internalization. Moreover, TPGS synergistically improved the cytotoxicity of MAD by targeting mitochondrial organelles, improving reactive oxygen species levels and reducing the mitochondrial transmembrane potential. More importantly, MAD-TPGS significantly impeded the metastasis of tumor cells. In vivo results further confirmed that, in addition to exhibiting excellent biocompatibility, MAD-TPGS exhibited greater antitumor efficacy than free MAD. Interestingly, MAD-TPGS displayed superior suppression of CMT metastasis via tail vein injection compared to oral administration, indicating its suitability for intravenous delivery. Overall, MAD-TPGS could be applied as a potential antimetastatic cancer agent for CMT.
Assuntos
Antineoplásicos , Neoplasias Mamárias Animais , Cães , Animais , Micelas , Polietilenoglicóis , Antineoplásicos/farmacologia , Polímeros , Neoplasias Mamárias Animais/tratamento farmacológico , Vitamina E , Portadores de Fármacos , Linhagem Celular TumoralRESUMO
Contamination by pathogens, such as bacteria, can irritate a wound and prevent its healing, which may affect the physical fitness of the infected person. As such, the development of more novel nano-biomaterials able to cope with the inflammatory reaction to bacterial infection during the wound healing process to accelerate wound healing is required. Herein, a halofuginonesilver nano thermosensitive hydrogel (HTPM&AgNPs-gel) was prepared via a physical swelling method. HTPM&AgNPs-gel was characterized based on thermogravimetric analysis, differential scanning calorimetry, morphology, injectability, and rheological mechanics that reflected its exemplary nature. Moreover, HTPM&AgNPs-gel was further tested for its ability to facilitate healing of skin fibroblasts and exert antibacterial activity. Finally, HTPM&AgNPs-gel was tested for its capacity to accelerate general wound healing and treat bacterially induced wound damage. HTPM&AgNPs-gel appeared spherical under a transmission electron microscope and showed a grid structure under a scanning electron microscope. Additionally, HTPM&AgNPs-gel demonstrated excellent properties, including injectability, temperature-dependent swelling behavior, low loss at high temperatures, and appropriate rheological properties. Further, HTPM&AgNPs-gel was found to effectively promote healing of skin fibroblasts and inhibit the proliferation of Escherichia coli and Staphylococcus aureus. An evaluation of the wound healing efficacy demonstrated that HTPM&AgNPs-gel had a more pronounced ability to facilitate wound repair and antibacterial effects than HTPM-gel or AgNPs-gel alone, and exhibited ideal biocompatibility. Notably, HTPM&AgNPs-gel also inhibited inflammatory responses in the healing process. HTPM&AgNPs-gel exhibited antibacterial, anti-inflammatory, and scar repair features, which remarkably promoted wound healing. These findings indicated that HTPM&AgNPs-gel holds great clinical potential as a promising and valuable wound healing treatment.
Assuntos
Nanopartículas Metálicas , Piperidinas , Quinazolinonas , Prata , Humanos , Prata/farmacologia , Prata/química , Staphylococcus aureus , Cicatrização , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Hidrogéis/química , Anti-Inflamatórios/farmacologiaRESUMO
Porcine epidemic diarrhea virus (PEDV) is an acute enteric coronavirus, inducing watery diarrhea and high mortality in piglets, leading to huge economic losses in global pig industry. Ivermectin (IVM), an FDA-approved antiparasitic agent, is characterized by high efficacy and wide applicability. However, the poor bioavailability limits its application. Since the virus is parasitized inside the host cells, increasing the intracellular drug uptake can improve antiviral efficacy. Hence, we aimed to develop nanostructured lipid carriers (NLCs) to enhance the antiviral efficacy of IVM. The findings first revealed the capacity of IVM to inhibit the infectivity of PEDV by reducing viral replication with a certain direct inactivation effect. The as-prepared IVM-NLCs possessed hydrodynamic diameter of 153.5 nm with a zeta potential of -31.5 mV and high encapsulation efficiency (95.72%) and drug loading (11.17%). IVM interacted with lipids and was enveloped in lipid carriers with an amorphous state. Furthermore, its encapsulation in NLCs could enhance drug internalization. Meanwhile, IVM-NLCs inhibited PEDV proliferation by up to three orders of magnitude in terms of viral RNA copies, impeding the accumulation of reactive oxygen species and mitigating the mitochondrial dysfunction caused by PEDV infection. Moreover, IVM-NLCs markedly decreased the apoptosis rate of PEDV-induced Vero cells. Hence, IVM-NLCs showed superior inhibitory effect against PEDV compared to free IVM. Together, these results implied that NLCs is an efficient delivery system for IVM to improve its antiviral efficacy against PEDV via enhanced intracellular uptake.
RESUMO
Active particles (living or synthetic) often move through inhomogeneous environments, such as gradients in light, heat or nutrient concentration, that can lead to directed motion (or taxis). Recent research has explored inhomogeneity in the rheological properties of a suspending fluid, in particular viscosity, as a mechanical (rather than biological) mechanism for taxis. Theoretical and experimental studies have shown that gradients in viscosity can lead to reorientation due to asymmetric viscous forces. In particular, recent experiments with Chlamydomonas Reinhardtii algae swimming across sharp viscosity gradients have observed that the microorganisms are redirected and scattered due to the viscosity change. Here we develop a simple theoretical model to explain these experiments. We model the swimmers as spherical squirmers and focus on small, but sharp, viscosity changes. We derive a law, analogous to Snell's law of refraction, that governs the orientation of active particles in the presence of a viscosity interface. Theoretical predictions show good agreement with experiments and provide a mechanistic understanding of the observed reorientation process.
Assuntos
Chlamydomonas reinhardtii , Modelos Teóricos , Viscosidade , Movimento (Física) , ReologiaRESUMO
Silver nanoparticles (AgNPs) are ultra-small silver particles with a size from 1 to 100 nanometers. Unlike bulk silver, they have unique physical and chemical properties. Numerous studies have shown that AgNPs have beneficial biological effects on various diseases, including antibacterial, anti-inflammatory, antioxidant, antiparasitic, and antiviruses. One of the most well-known applications is in the field of antibacterial applications, where AgNPs have strong abilities to kill multi-drug resistant bacteria, making them a potential candidate as an antibacterial drug. Recently, AgNPs synthesized from plant extracts have exhibited outstanding antiparasitic effects, with a shorter duration of use and enhanced ability to inhibit parasite multiplication compared to traditional antiparasitic drugs. This review summarizes the types, characteristics, and the mechanism of action of AgNPs in anti-parasitism, mainly focusing on their effects in leishmaniasis, flukes, cryptosporidiosis, toxoplasmosis, Haemonchus, Blastocystis hominis, and Strongylides. The aim is to provide a reference for the application of AgNPs in the prevention and control of parasitic diseases.
RESUMO
Salmonella Typhimurium (ST) can hide inside cells, avoid antibiotic therapy and being killed by host's immune system to cause persistent infection in humans and animals. Metal nanoparticles are regarded as an alternative to overcome the above limitations, silver nanoparticles especially have been applied in combating drug-resistant bacteria. However, the therapeutic effects of silver nanoparticles against intracellular infection and their impacts on host immunity remain an area of further investigation. In this work, we synthesized Ganoderma extract-capped silver nanoparticles (Ag@Ge) and explored the therapeutic potential and immune adjuvant effects of Ag@Ge against intracellular ST. Firstly, Ag@Ge had a small particle size of 35.52±7.46 nm, good stability, and biocompatibility. Then, Ag@Ge effectively entered RAW 264.7 cells, suppressed intracellular ST infection. Furthermore, Ag@Ge activated mouse dendritic cells (DCs) in vitro, evidenced by increased phenotypic markers (CD80/CD86/CD40/major compatibility complex II (MHCII)) expression and cytokine and chemokine (interleukin-6 (IL-6), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL-2), and chemokine (C-C motif) receptor-7 (CCR-7)) transcription. More notably, the combination of Ag@Ge with inactivated ST recruited intestinal DCs to mitigate ST infection in mice, evidenced by decreased body weight loss and bacterial loads in the tissues (liver, jejunum, and colon), and improved platelets count. The above findings indicate that Ag@Ge has the potential as an alternative nano-antibiotic against intracellular ST infection.
Assuntos
Nanopartículas Metálicas , Salmonella typhimurium , Humanos , Animais , Camundongos , Prata/farmacologia , Prata/metabolismo , Células Dendríticas/metabolismo , Quimiocinas/metabolismo , Quimiocinas/farmacologiaRESUMO
Human cytochrome P450 1B1 (hCYP1B1), an extrahepatic cytochrome P450 enzyme over-expressed in various tumors, has been validated as a promising target for preventing and treating cancers. Herein, two series of chalcone derivatives were synthesized to discover potent hCYP1B1 inhibitors without AhR agonist effect. Structure-activity relationship (SAR) studies demonstrated that 4'-trifluoromethyl on the B-ring strongly enhanced the anti-hCYP1B1 effects, identifying A9 as a promising lead compound. Further SAR analysis on A9 derivatives (modified A-ring of 4'-trifluoromethylchalcone) showed that introducing 2-methoxyl improved the anti-hCYP1B1 effect and selectivity, while introducing a methoxyl at the C-4 site was beneficial for avoiding AhR activation. Ultimately, five 4'-trifluoromethyl chalcones were identified as potent hCYP1B1 inhibitors (IC50 < 10 nM), while B18 exhibits the most potent anti-hCYP1B1 effect (IC50 = 3.6 nM), suitable metabolic stability and good cell-permeability. B18 also acted as an AhR antagonist and could down-regulate hCYP1B1 in living systems. Mechanistic studies showed that B18 potently inhibited hCYP1B1 in a competitive inhibition manner (Ki = 3.92 nM), while docking simulations revealed that B18 could tightly bind to the catalytic cavity of hCYP1B1 mainly via hydrophobic and hydrogen-bonding interactions. Furthermore, B18 could potently inhibit hCYP1B1 in living cells and showed remarkable anti-migration ability on MFC-7 cells. Taken together, this study deciphered the SARs of chalcones as hCYP1B1 inhibitors and provided several potent hCYP1B1 inhibitors as promising candidates for the development of more efficacious anti-migration agents.
Assuntos
Chalconas , Humanos , Chalconas/farmacologia , Chalconas/química , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento MolecularRESUMO
Human cytochrome P450 3A4 (hCYP3A4) is a predominant enzyme to trigger clinically relevant drug/herb-drug interactions (DDIs or HDIs). Although a number of herbal medicines have been found with strong anti-hCYP3A4 effects in vitro, the in vivo modulatory effects of herbal medicines on hCYP3A4 and their potential risks to trigger HDIs are rarely investigated. Herein, we demonstrate a case study to efficiently find the herbal medicine(s) with potent hCYP3A4 inhibition in vitro and to accurately assess the potential HDIs risk in vivo. Following screening over 100 herbal medicines, the Chinese herb Styrax was found with the most potent hCYP3A4 inhibition in HLMs. In vitro assays demonstrated that Styrax could potently inhibit mammalian CYP3A in liver and intestinal microsomes from both humans and rats. In vivo pharmacokinetic assays showed that Styrax (i.g., 100 mg/kg) significantly elevated the plasma exposure of two CYP3A-substrate drugs (midazolam and felodipine) when midazolam or felodipine was administered orally. By contrast, the plasma exposure of either midazolam or felodipine was hardly affected by Styrax (i.g.) when the victim drug was administered intravenously. Further investigations demonstrated that seven pentacyclic triterpenoid acids (PTAs) in Styrax were key substances responsible for CYP3A inhibition, while these PTAs could be exposed to intestinal tract at relatively high exposure levels but their exposure levels in rat plasma and liver were extremely low. These findings well explained why Styrax (i.g.) could elevate the plasma exposure of victim drugs only when these agents were orally administrated. Collectively, our findings demonstrate that Styrax can modulate the pharmacokinetic behavior of CYP3A-substrate drugs via inhibiting intestinal CYP3A, which is very helpful for the clinical pharmacologists to better assess the HDIs triggered by Styrax or Styrax-related herbal products.
RESUMO
Background: Halofuginone (HF)-loaded TPGS polymeric micelles (HTPM) were successfully fabricated using the thin-film hydration technique. HTPM via intravenous injection have been demonstrated to exert an excellent anticancer effect against triple-negative breast cancer (TNBC) cells and subcutaneous xenografts. In the present study, we further explored the potential treatment effect and mechanism of orally administered HTPM alone and in combination with surgical therapy on TNBC in subcutaneous and orthotopic mouse models. Methods: Herein, the stability and in vitro release behavior of HTPM were first evaluated in the simulated gastrointestinal fluids. Caco-2 cell monolayers were then used to investigate the absorption and transport patterns of HF with/without encapsulation in TPGS polymeric micelles. Subsequently, the therapeutic effect of orally administered HTPM was checked on subcutaneous xenografts of TNBC in nude mice. Ultimately, orally administered HTPM, combined with surgical therapy, were utilized to treat orthotopic TNBC in nude mice. Results: Our data confirmed that HTPM exhibited good stability and sustained release in the simulated gastrointestinal fluids. HF was authenticated to be a substrate of P-glycoprotein (P-gp), and its permeability across Caco-2 cell monolayers was markedly enhanced via heightening intracellular absorption and inhibiting P-gp efflux due to encapsulation in TPGS polymeric micelles. Compared with HF alone, HTPM showed stronger tumor-suppressing effects in subcutaneous xenografts of MDA-MB-231 cells when orally administered. Moreover, compared with HTPM or surgical therapy alone, peroral HTPM combined with partial surgical excision synergistically retarded the growth of orthotopic TNBC. Fundamentally, HTPM orally administered at the therapeutic dose did not cause any pathological injury, while HF alone led to weight loss and jejunal bleeding in the investigated mice. Conclusion: Taken together, HTPM could be applied as a potential anticancer agent for TNBC by oral administration.
Assuntos
Micelas , Neoplasias de Mama Triplo Negativas , Animais , Células CACO-2 , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Piperidinas , Polímeros , Quinazolinonas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Vitamina ERESUMO
Maduramicin ammonium (MAD) is one of the most frequently used anticoccidial agents in broiler chickens. However, the high toxicity and low solubility of MAD limit its clinical application. In this study, MAD-loaded nanostructured lipid carriers (MAD-NLCs) were prepared to overcome the defects of MAD by using highly soluble nanostructured lipid carriers (NLCs). The formulation was optimized via a three-level, three-factor Box-Behnken response surface method. Then, the optimal MAD-NLCs were evaluated according to their hydrodynamic diameter (HD), zeta potential (ZP), crystal structure, encapsulation efficiency (EE), drug loading (DL), in vitro release, and anticoccidial effect. The optimal MAD-NLCs had an HD of 153.6 ± 3.044 nm and a ZP of -41.4 ± 1.10 mV. The X-ray diffraction and Fourier-transform infrared spectroscopy results indicated that the MAD was encapsulated in the NLCs in an amorphous state. The EE and DL were 90.49 ± 1.05% and 2.34 ± 0.04%, respectively, which indicated that the MAD was efficiently encapsulated in the NLCs. In the in vitro study, the MAD-NLCs demonstrated a slow and sustained drug release behavior. Notably, MAD-NLCs had an excellent anticoccidial effect against Eimeria tenella in broiler chickens. In summary, MAD-NLCs have huge potential to form a new preparation administered via drinking water with a powerful anticoccidial effect.
RESUMO
We report a novel reversible bonding technique for liquid metal (LM) microelectrode fabrication in this study. This technique greatly simplifies the process of LM micro-electrode fabrication and can be used to achieve the rapid fabrication of LM blind-end electrodes. Three kinds of treatments, including heat treatment, plasma treatment and heat/plasma treatment, were tested for bonding strength. The experimental results showed that the heat/plasma treatment has the strongest bonding strength. All the three treatments can be completely released by simple water treatment. This handy fabrication method can help to integrate micro-liquid metal electrodes vertically in a microchannel. At the end of this work, this fabrication method was used to integrate liquid metal thermocouples in a microchannel, which greatly shortened the fabrication time and lowered the cost compared with traditional deposition or sputtering methods.
Assuntos
Metais , Tecnologia , MicroeletrodosRESUMO
A room temperature liquid metal-based microvalve has been proposed in this work. The microvalve has the advantages of easy fabrication, high flexibility, and a low leak rate. By designing a posts array in the channel, the liquid metal can be controlled to form a deformable valve boss and block the flow path. Besides, through adjustment of the pressure applied to the liquid metal, the microvalve can perform reliable switching commands. To eliminate the problem that liquid metal is easily oxidized, which causes the microvalve to have poor repeatability, a method of electrochemical cathodic protection has been proposed, which significantly increases the number of open/close switch cycles up to 145. In addition, this microvalve overcomes the shortcomings of the traditional microvalve that requires an alignment process to assemble all the parts. When the valve is closed, no leak rate is detected at ≤320 mbar, and the leak rate is ≤0.043 µL/min at 330 mbar, which indicates it has good tightness. As an application, we also fabricate a chip that can control bubble flow based on this microvalve. Therefore, this microvalve has great prospects in the field of microfluidics.
RESUMO
As an emerging functional material, the liquid metal has demonstrated its encouraging potential in several areas with practical trials, while its global uniformity including high density and limited macroscopic interface might become a barrier for some tough application scenarios. Here, we proposed the concept of liquid metal foaming via decomposition agents, aiming to develop a generalized way to make porous foam metallic fluid, which would pave the way in achieving more structured features and adaptability of liquid metals. By introducing a greenness strategy with the help of an ecofriendly foaming agent, we realized a series of designed targeted liquid metal foams (LMFs). Compared with common liquid metals, LMFs possess many excellent properties, such as abundant interfaces, tunable conductivity, and adjustable stiffness, due to the controllable regulation of their porous structure. According to these unique characteristics, diversified values of LMFs were obtained. Benefiting from the naturally enriched interface in LMFs, the hydrogen evolution of LMFs in neutral deionized water was more efficient and more productive. Additionally, the compact LMF-air battery with high performance was originally manufactured. Moreover, the tunable LMF-enabled four-dimensional (4D) electromagnetic shielding materials possess excellent shielding performance. This material could open up broad vistas for the application of LMs.
RESUMO
As immune adjuvants assisting vaccines, nanoparticle delivery systems have been widely exploited. Squalene, the major ingredient of approved adjuvant MF59, has great potential in activating immune responses. In the current study, model antigen ovalbumin (OVA) was encapsulated into squalene-based nanostructured lipid carriers (NLCs), and the chitosan, a cationic polysaccharide, was used for modifying nanoparticles to develop a functionalized and cationic nanoparticle delivery system (OVA-csNLCs). Firstly, the optimal formulation of csNLCs was successfully screened out, and had hydrodynamic diameter of 235.80 ± 5.99 nm and zeta potential of 34.90 ± 6.95 mV. Then, the generated OVA-csNLCs had no significant difference in hydrodynamic diameter and exhibited lower zeta potential of 19.03 ± 0.31 mV and high encapsulation efficiency of 83.4%. Sucrose (10%, w/w) was selected as optimal lyoprotectant, exhibiting good stability of OVA-csNLCs in the form of freeze-dried powder. More importantly, the OVA-csNLCs effectively promoted OVA antigen uptake by macrophage, significantly enhanced the level of OVA-specific IgG, and induced a Th2-based immune response in vivo. Furthermore, mice immunization experiment demonstrated that OVA-csNLCs had well biocompatibility and facilitated spleen lymphocytes proliferation. Above findings indicate that chitosan modified squalene nanostructured lipid carriers show promise as antigen delivery system and an open adjuvant platform.