Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458379

RESUMO

Polydimethylsiloxane (PDMS) foam materials with lightweight, excellent oil resistance and mechanical flexibility are highly needed for various practical applications in aerospace, transportation, and oil/water separation. However, traditional PDMS foam materials usually present poor chemical resistance and easily swell in various solvents, which greatly limits their potential application. Herein, novel fluorosilicone rubber foam (FSiRF) materials with different contents of trifluoropropyl lateral groups were designed and fabricated by a green (no solvents used) and rapid (<10 min foaming process) foaming/crosslinking approach at ambient temperature. Typically, vinyl-terminated poly(dimethyl-co-methyltrifluoropropyl) siloxanes with different fluorine contents of 0−50 mol% were obtained through ring-opening polymerization to effectively adjust the chemical resistance of the FSiRFs. Notably, the optimized FSiRF samples exhibit lightweight (~0.25 g/cm−3), excellent hydrophobicity/oleophilicity (WCA > 120°), reliable mechanical flexibility (complete recovery ability after stretching of 130% strain or compressing of >60%), and improved chemical resistance and structural stability in various solvents, making them promising candidates for efficient and continuous oil−water separation. This work provides an innovative concept to design and prepare advanced fluorosilicone rubber foam materials with excellent chemical resistance for potential oil−water separation application.

2.
Polymers (Basel) ; 14(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36432936

RESUMO

Advanced organic vapor sensors that simultaneously have high sensitivity, fast response, and good reproducibility are required. Herein, flexible, robust, and conductive vapor-grown carbon fibers (VGCFs)-filled polydimethylsiloxane (PDMS) porous composites (VGCFs/PDMS sponge (CPS)) with multilevel pores and thin, rough, and hollows wall were prepared based on the sacrificial template method and a simple dip-spin-coating process. The optimized material showed outstanding mechanical elasticity and durability, good electrical conductivity and hydrophobicity, as well as excellent acid and alkali tolerance. Additionally, CPS exhibited good reproducible sensing behavior, with a high sensitivity of ~1.5 × 105 s-1 for both static and flowing organic vapor, which was not affected in cases such as 20% squeezing deformation or environment humidity distraction (20~60% RH). Interestingly, both the reproducibility and sensitivity of CPS were better than those of film-shaped VGCFs/PDMS (CP), which has a thickness of two hundred microns. Therefore, the contradiction between the reproducibility and high sensitivity was well-solved here. The above excellent performance could be ascribed to the unique porous structures and the rough, thin, hollow wall of CPS, providing various gas channels and large contact areas for organic vapor penetration and diffusion. This work paves a new way for developing advanced vapor sensors by optimizing and tailoring the pore structure.

3.
J Hazard Mater ; 363: 286-294, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30312925

RESUMO

Fire prevention and safety of combustible materials is a global challenge. To reduce their high fire risk, traditional smoke detectors are widely used indoor via detecting smoke product after combustion; however, they usually show a long response time and limitation for outdoor use. Herein, we report a temperature-induced electrical resistance transition of graphene oxide wide-ribbon (GOWR) wrapped sponges to reliably monitor fire safety of the combustible materials. Novel rectangle-like GOWR sheets are synthesized from unzipping carbon nanofibers and used to fabricate GOWR wrapped melamine formaldehyde sponges with multi-functionalities, e.g. lightweight, good hydrophobicity, reversible compressibility, excellent acidic/alkaline tolerance and flame resistance. The GOWR sheets on the sponge skeleton can be in-situ thermally reduced once encountering a flame attack or abnormal high temperature, inducing a distinct transition in electrical resistance. Consequently, an ultrafast alarm response of ∼2 s to flame attack is triggered, and rapid fire early warning signals to abnormal high temperatures, e.g. ∼33 s at 300 °C, are achieved below ignition temperature of most combustible materials. This method drives substantial motivation and opportunity to develop advanced fire detection and early warning sensors for reducing the high fire risk of various combustible materials in outdoor applications.

4.
ACS Nano ; 12(1): 416-424, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29240398

RESUMO

Design and development of smart sensors for rapid flame detection in postcombustion and early fire warning in precombustion situations are critically needed to improve the fire safety of combustible materials in many applications. Herein, we describe the fabrication of hierarchical coatings created by assembling a multilayered graphene oxide (GO)/silicone structure onto different combustible substrate materials. The resulting coatings exhibit distinct temperature-responsive electrical resistance change as efficient early warning sensors for detecting abnormal high environmental temperature, thus enabling fire prevention below the ignition temperature of combustible materials. After encountering a flame attack, we demonstrate extremely rapid flame detection response in 2-3 s and excellent flame self-extinguishing retardancy for the multilayered GO/silicone structure that can be synergistically transformed to a multiscale graphene/nanosilica protection layer. The hierarchical coatings developed are promising for fire prevention and protection applications in various critical fire risk and related perilous circumstances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA