Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Hepatobiliary Pancreat Dis Int ; 23(1): 43-51, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36966125

RESUMO

BACKGROUND: Acute liver failure (ALF) is an unpredictable and life-threatening critical illness. The pathological characteristic of ALF is massive necrosis of hepatocytes and lots of inflammatory cells infiltration which may lead to multiple organ failure. METHODS: Animals were divided into 3 groups, normal, thioacetamide (TAA, ALF model) and TAA + AGK2. Cultured L02 cells were divided into 5 groups, normal, TAA, TAA + mitofusin 2 (MFN2)-siRNA, TAA + AGK2, and TAA + AGK2 + MFN2-siRNA groups. The liver histology was evaluated with hematoxylin and eosin staining, inositol-requiring enzyme 1 (IRE1), activating transcription factor 6ß (ATF6ß), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylated-PERK (p-PERK). C/EBP homologous protein (CHOP), reactive oxygen species (ROS), MFN2 and glutathione peroxidase 4 (GPX4) were measured with Western blotting, and cell viability and liver chemistry were also measured. Mitochondria-associated endoplasmic reticulum membranes (MAMs) were measured by immunofluorescence. RESULTS: The liver tissue in the ALF group had massive inflammatory cell infiltration and hepatocytes necrosis, which were reduced by AGK2 pre-treatment. In comparison to the normal group, apoptosis rate and levels of IRE1, ATF6ß, p-PERK, CHOP, ROS and Fe2+ in the TAA-induced ALF model group were significantly increased, which were decreased by AGK2 pre-treatment. The levels of MFN2 and GPX4 were decreased in TAA-induced mice compared with the normal group, which were enhanced by AGK2 pre-treatment. Compared with the TAA-induced L02 cell, apoptosis rate and levels of IRE1, ATF6ß, p-PERK, CHOP, ROS and Fe2+ were further increased and levels of MFN2 and GPX4 were decreased in the MFN2-siRNA group. AGK2 pre-treatment decreased the apoptosis rate and levels of IRE1, ATF6ß, p-PERK, CHOP, ROS and Fe2+ and enhanced the protein expression of MFN2 and GPX4 in MFN2-siRNA treated L02 cell. Immunofluorescence observation showed that level of MAMs was promoted in the AGK2 pre-treatment group when compared with the TAA-induced group in both mice and L02 cells. CONCLUSIONS: The data suggested that AGK2 pre-treatment had hepatoprotective role in TAA-induced ALF via upregulating the expression of MFN2 and then inhibiting PERK and ferroptosis pathway in ALF.


Assuntos
Ferroptose , Falência Hepática Aguda , Camundongos , Animais , Tioacetamida/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/prevenção & controle , Transdução de Sinais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/efeitos adversos , Proteínas Serina-Treonina Quinases/metabolismo , Apoptose , Necrose , RNA Interferente Pequeno/efeitos adversos , Estresse do Retículo Endoplasmático/genética
2.
Biochem Biophys Res Commun ; 499(3): 702-710, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29605299

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Recent studies reported that lncRNA LINC00473 (LNC473) was involved in cancer progression. However, the clinical significance and functional role of LNC473 in HCC progression is still unknown. In the present study, we found that the LNC473 expression was markedly elevated in HCC tissues and correlated with bigger tumor size, higher BCLC stage, vascular invasion and poor prognosis. Gain- and loss-of-function assay showed that LNC473 enhanced HCC cell proliferation and invasion and induced epithelial-mesenchymal transition (EMT) process. Mechanistically, LNC473 associated with oncoprotein survivin and regulates its stability. Moreover, LNC473 could recruit deubiquitinase USP9X to inhibit the ubiquitination level of survivin and then increase survivin expression. Therefore, our results suggest that LNC473 exerts its functions as an oncogene in HCC progression and may be a therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Estabilidade Proteica , RNA Longo não Codificante/genética , Survivina , Regulação para Cima/genética
3.
Neurochem Res ; 43(6): 1161-1170, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29675728

RESUMO

Neuroinflammation involves in the progression of many central nervous system diseases. Several studies have shown that histone deacetylase (HDAC) inhibitors modulated inflammatory responses in lipopolysaccharide (LPS) stimulated microglia. While, the mechanism is still unclear. The aim of present study was to investigate the effect of HDAC2 inhibitor CAY10683 on inflammatory responses and TLR4/NF-κB signaling pathways in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. The effect of CAY10683 on cell viability of BV2 microglial cells was detected by CCK-8 assay. The expressions of inflammatory cytokines were analyzed by western blotting and RT-PCR respectively. The TLR4 protein expression was measured by western blotting, immunofluorescence, immunohistochemistry respectively. The protein expressions of MYD88, phospho-NF-κB p65, NF-κB-p65, acetyl-H3 (AH3), H3, and HDAC2 were analyzed by western blotting. We found that CAY10683 could inhibit expression levels of inflammatory cytokine TNF-α and IL-1ß in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. It could induce TLR4, MYD88, phospho-NF-κB p65, and HDAC2 expressions. Moreover, CAY10683 increased the acetylation of histones H3 in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. Taken together, our findings suggested that HDAC2 inhibitor CAY10683 could suppress neuroinflammatory responses and TLR4/NF-κB signaling pathways by acetylation after LPS stimulation.


Assuntos
Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Lipopolissacarídeos/toxicidade , NF-kappa B/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Linhagem Celular , Histona Desacetilase 2/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , NF-kappa B/metabolismo , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo
4.
Mediators Inflamm ; 2018: 7859601, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29725271

RESUMO

The purpose of this study was to investigate the protective mechanism of HDAC2 inhibitor CAY10683 on intestinal mucosal barrier in acute liver failure (ALF). In order to establish ALF-induced intestinal epithelial barrier disruption models, D-galactosamine/LPS and LPS were, respectively, used with rats and NCM460 cell and then administrated with CAY10683. Transepithelial electrical resistance (TEER) was measured to detect the permeability of cells. Real-time PCR and Western blotting were employed to detect the key mRNA and protein levels. The intestinal epithelial tissue pathology was detected. After interfering with CAY10683, the mRNA and protein levels of TLR4, MyD88, TRIF, and TRAF6 were decreased compared with model group (P < 0.05), whereas the levels of ZO-1 and occluding were elevated (P < 0.05). The permeability was elevated in CAY10683-interfered groups, when compared with model group (P < 0.05). And the degree of intestinal epithelial tissue pathological damage in CAY10683 group was significantly reduced. Moreover, CAY10683 significantly decreased the TLR4 staining in animal tissue. The HDAC2 inhibitor CAY10683 could promote the damage of intestinal mucosal barrier in ALF through inhibiting LPS/TLR4/MyD88 pathway.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Lipopolissacarídeos/toxicidade , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Galactosamina/toxicidade , Histona Desacetilase 2/antagonistas & inibidores , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Falência Hepática Aguda/induzido quimicamente , Ratos , Reação em Cadeia da Polimerase em Tempo Real
5.
Hepatobiliary Pancreat Dis Int ; 17(5): 423-429, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30249543

RESUMO

BACKGROUND: Histone deacetylases (HDACs) inhibitors are new anti-fibrotic drugs that inhibit the activity of hepatic stellate cells. The present study focused on the anti-fibrotic function of HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) by suppressing transforming growth factor-ß1 (TGF-ß1) signaling. METHODS: Male Sprague-Dawley rats were used to induce liver fibrosis with carbon tetrachloride (CCl4) and LX2 cell (human hepatic stellate cell line) was stimulated by TGF-ß1. Both animals and cells were treated with SAHA. The Smad7 and connective tissue growth factor (CTGF) mRNA levels were detected by real-time polymerase chain reaction (PCR). Western blotting was used to examine the protein levels of CTGF, Histone H3 (H3), Smad7, Smad2/3, Acetyl-Histone H3 (AH3), HDAC2, α-smooth muscle actin (α-SMA), HDAC6, p-Smad2/3 and HDAC8. In addition, the TGF-ß1 and liver enzyme levels from rat serum were detected. Histopathological changes were examined by hematoxylin and eosin (HE), Sirius red and Masson trichrome staining. The α-SMA expression was detected by immumohistochemical staining. RESULTS: Compared with control group, the TGF-ß1 and liver enzyme levels from rat serum, together with the mRNA levels of CTGF and protein levels of CTGF, HDAC2, α-SMA, HDAC6, p-Smad2/3 and HDAC8 were elevated in fibrotic rats (P < 0.01). But the Smad7 mRNA and AH3 protein levels were notably suppressed in the fibrotic rats (P < 0.01). Pathological examination showed the typical changes of liver fibrosis in the fibrotic rats. After the treatment with SAHA, the levels of liver enzymes, TGF-ß1, CTGF, HDAC2, α-SMA, HDAC6, p-Smad2/3 and HDAC8 were reduced (P < 0.01) and Smad7 and AH3 protein contents were elevated in liver fibrotic rats (P < 0.01). Moreover, immumohistochemistry showed that SAHA significantly suppressed the α-SMA protein content in fibrotic liver (P < 0.01). CONCLUSION: The HDAC inhibitor SAHA alleviated liver fibrosis by suppressing the TGF-ß1 signaling.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/efeitos dos fármacos , Análise de Variância , Animais , Biópsia por Agulha , Western Blotting , Modelos Animais de Doenças , Imuno-Histoquímica , Cirrose Hepática/induzido quimicamente , Masculino , Terapia de Alvo Molecular/métodos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Proteínas Smad/metabolismo , Vorinostat/farmacologia
6.
J Surg Res ; 205(1): 1-10, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27620992

RESUMO

BACKGROUND: Histone deacetylase (HDAC) inhibitors have been widely applied in the clinic as anticancer drugs against multiple neoplasms and proved their anti-inflammation under different pathology recently. Trichostatin A (TSA) is an HDAC inhibitor specific in class I and II HDAC enzymes. The aim of the present study was to elucidate the protective effects of TSA on acute liver failure (ALF) in rats and its potential mechanism. METHODS: A total of 18 female Sprague-Dawley rats were separated into control, model, and TSA groups. We used Western blotting to determine the expression of HDACs, inflammatory cytokines, and acetylation of histone in liver and small intestine. The gene expression of inflammatory factors and Cox-2 was detected by a polymerase chain reaction. Colonic motility was assessed by spatiotemporal mapping. Histologic analysis and immunohistochemistry were performed. Intestinal permeability examination and levels of alanine aminotransferase, aspartate aminotransferase, and total bilirubin were also observed. RESULTS: ALF procedure caused harm to histology of liver and small intestine, increased the intestinal permeability and serum levels of alanine aminotransferase, aspartate aminotransferase, and total bilirubin. It also interrupted the normal organization of colonic motor patterns by hurting enteric nervous system and pacemaker cells. Along with the decrease of inflammatory factors in ALF rats by TSA administration, all the damage to the liver, the small intestine, and the colon was repaired. CONCLUSIONS: TSA alleviates the lesion in liver, as well as in small intestine and colon in ALF rats by directly inhibiting inflammatory response.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Enteropatias/prevenção & controle , Falência Hepática Aguda/complicações , Fígado/efeitos dos fármacos , Animais , Citocinas/metabolismo , Feminino , Motilidade Gastrointestinal/efeitos dos fármacos , Histona Desacetilases/metabolismo , Enteropatias/etiologia , Intestino Delgado/efeitos dos fármacos , Lipopolissacarídeos , Fígado/patologia , Falência Hepática Aguda/enzimologia , Falência Hepática Aguda/patologia , Ratos , Ratos Sprague-Dawley
7.
Chemotherapy ; 61(1): 32-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26528767

RESUMO

A hybrid drug delivery system coloaded with different drugs for synergistic drug delivery was developed. Alginate/calcium carbonate (CaCO3) hybrid microparticles (MPs) were fabricated via a facile coprecipitation method under mild conditions without using any organic solvent and surfactant. Due to the incorporation of negatively charged alginate chains onto the surface, the obtained hybrid MPs with spherical morphology showed good colloidal stability in an aqueous solution. An antitumor drug (doxorubicin, DOX) and a drug resistance reversal agent (verapamil, VP) were coloaded in the hybrid MPs simultaneously to obtain dual-drug-loaded MPs (DOX/VP/MP). Due to the presence of inorganic CaCO3 (∼54 wt%), the drugs could be loaded in the hybrid MPs with high encapsulation efficiency and the drug release could be effectively sustained. The cell growth inhibition of the drug-loaded MPs was evaluated in HeLa cells. An in vitro study showed DOX/VP/MP exhibited higher cell growth inhibition as compared with DOX monodrug-loaded MPs (DOX/MP). These results suggest the hybrid MPs can potentially be used as a synergistic drug delivery platform for cancer chemotherapy.


Assuntos
Alginatos/química , Carbonato de Cálcio/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Microtecnologia , Antibióticos Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ácido Glucurônico/química , Células HeLa , Ácidos Hexurônicos/química , Humanos , Tamanho da Partícula
8.
Hepatobiliary Pancreat Dis Int ; 13(3): 309-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24919615

RESUMO

BACKGROUND: Acute liver failure (ALF) is a serious clinical syndrome with high mortality. Sodium butyrate has been shown to alleviate organ injury in a wide variety of preclinical models of critical diseases. The aim of this study was to investigate the protective effect of sodium butyrate on ALF in rats. METHODS: All rats were randomly divided into control, model and sodium butyrate treatment groups. Except the control group, the rats were induced ALF animal model by subcutaneous injection of human serum albumin+ D-galactosamine+lipopolysaccharide. After induction of ALF, the rats in the treatment group received sodium butyrate (500 mg/kg) at 12-hour or 24-hour time point. Fourty-eight hours after ALF induction, the animals were sacrificed and samples were harvested. Serum endotoxin, high mobility group box-1 (HMGB1), liver function parameters, tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) were measured. The expression of HMGB1 and nuclear factor-kappa B (NF-kappaB) p65 protein in liver tissue was detected by Western blotting. The histological changes of liver and intestine were examined. The survival duration was also observed. RESULTS: Serum endotoxin, alanine aminotransferase, HMGB1, TNF-alpha and IFN-gamma were significantly increased and the liver histology showed more severe histopathological injury in the model group compared with the control group (P<0.05). Compared to the model group, sodium butyrate treatment significantly improved the histopathological changes in the liver and intestine, reduced serum endotoxin and inflammatory cytokines, suppressed HMGB1 and NF-kappaB p65 proteins in liver tissue, and prolonged the survival duration regardless of treatment at 12 hours or 24 hours after induction of ALF (P<0.05). CONCLUSIONS: Sodium butyrate protected the liver from toxin-induced ALF in rats. The mechanisms may be due to direct hepatoprotection and decreased intestinal permeability.


Assuntos
Ácido Butírico/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Falência Hepática Aguda/prevenção & controle , Fígado/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citoproteção , Modelos Animais de Doenças , Galactosamina , Proteína HMGB1/sangue , Mediadores da Inflamação/sangue , Interferon gama/sangue , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Lipopolissacarídeos , Fígado/metabolismo , Fígado/ultraestrutura , Falência Hepática Aguda/sangue , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/patologia , Permeabilidade , Ratos Wistar , Albumina Sérica , Albumina Sérica Humana , Fatores de Tempo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/sangue
9.
J Huazhong Univ Sci Technolog Med Sci ; 34(1): 10-17, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24496672

RESUMO

This study investigated the effect of advanced glycation end products (AGEs) on differentiation of naïve CD4(+) T cells and the role of the receptor of AGEs (RAGE) and peroxisome proliferator-activated receptors (PPARs) activity in the process in order to gain insight into the mechanism of immunological disorders in diabetes. AGEs were prepared by the reaction of bovine serum albumin (BSA) with glucose. Human naïve CD4(+) T cells, enriched from blood of healthy adult volunteers with negative selection assay, were cultured in vitro and treated with various agents including AGEs, BSA, high glucose, PGJ2 and PD68235 for indicated time. In short hairpin (sh) RNA knock-down experiment, naïve CD4(+) T cells were transduced with media containing shRNA-lentivirus generated from lentiviral packaging cell line, Lent-X(TM) 293 T cells. Surface and intracellular cytokine stainings were used for examination of CD4(+) T cell phenotypes, and real-time PCR and Western blotting for detection of transcription factor mRNA and protein expression, respectively. The suppressive function of regulatory T (Treg) cells was determined by a [(3)H]-thymidine incorporation assay. The results showed that AGEs induced higher pro-inflammatory Th1/Th17 cells differentiated from naïve CD4(+) T cells than the controls, whereas did not affect anti-inflammatory Treg cells. However, AGEs eliminated suppressive function of Treg cells. In addition, AGEs increased RAGE mRNA expression in naïve CD4(+) T cells, and RAGE knock-down by shRNA eliminated the effect of AGEs on the differentiation of CD4(+) T cells and the reduction of suppressive function of Treg cells. Furthermore, AGEs inhibited the mRNA expression of PPARγ, not PPARα PPARγ agonist, PGJ2, inhibited the effect of AGEs on naïve CD4(+) T cell differentiation and reversed the AGE-reduced suppressive function of Treg cells; on the other hand, PPARγ antagonist, PD68235, attenuated the blocking effect of RAGE shRNA on the role of AGEs. It was concluded that AGEs may promote CD4(+) T cells development toward pro-inflammatory state, which is associated with increased RAGE mRNA expression and reduced PPARγ activity.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Produtos Finais de Glicação Avançada/farmacologia , Células Th1/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Adulto , Animais , Western Blotting , Linfócitos T CD4-Positivos/metabolismo , Bovinos , Células Cultivadas , Glucose/farmacologia , Células HEK293 , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , PPAR gama/agonistas , PPAR gama/genética , PPAR gama/metabolismo , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Interferência de RNA , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Soroalbumina Bovina/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Células Th1/metabolismo , Células Th17/metabolismo
10.
J Hepatol ; 59(3): 450-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23669281

RESUMO

BACKGROUND & AIMS: Even though various experimental therapeutic approaches for chronic hepatitis B infection have been reported, few of them have been verified by clinical trials. We have developed an antigen-antibody (HBsAg-HBIG) immunogenic complex therapeutic vaccine candidate with alum as adjuvant (YIC), aimed at breaking immune tolerance to HBV by modulating viral antigen processing and presentation. A double-blind, placebo-controlled, phase II B clinical trial of YIC has been reported previously, and herein we present the results of the phase III clinical trial of 450 patients. METHODS: Twelve doses of either YIC or alum alone as placebo were administered randomly to 450 CHB patients and they were followed for 24weeks after the completion of immunization. The primary end point was HBeAg seroconversion, and the secondary end points were decrease in viral load, improvement of liver function, and histology. RESULTS: In contrast to the previous phase II B trial using six doses of YIC and alum as placebo, six more injections of YIC or alum resulted in a decrease of the HBeAg seroconversion rate from 21.8% to 14.0% in the YIC group, but an increase from 9% to 21.9% in the alum group. Decrease in serum HBV DNA and normalization of liver function were similar in both groups (p>0.05). CONCLUSIONS: Overstimulation with YIC did not increase but decreased its efficacy due to immune fatigue in hosts. An appropriate immunization protocol should be explored and is crucial for therapeutic vaccination. Multiple injections of alum alone could have stimulated potent inflammatory and innate immune responses contributing to its therapeutic efficacy, and needs further investigation.


Assuntos
Antígenos de Superfície da Hepatite B/uso terapêutico , Hepatite B Crônica/terapia , Imunoglobulinas/uso terapêutico , Vacinas Virais/uso terapêutico , Adjuvantes Imunológicos/administração & dosagem , Adulto , Compostos de Alúmen/administração & dosagem , Complexo Antígeno-Anticorpo/administração & dosagem , Complexo Antígeno-Anticorpo/uso terapêutico , Citocinas/sangue , Método Duplo-Cego , Feminino , Genótipo , Antígenos de Superfície da Hepatite B/administração & dosagem , Antígenos E da Hepatite B/sangue , Vírus da Hepatite B/classificação , Vírus da Hepatite B/genética , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Hepatite B Crônica/patologia , Humanos , Imunoglobulinas/administração & dosagem , Masculino , Vacinas Virais/efeitos adversos , Adulto Jovem
11.
Inflamm Res ; 62(7): 703-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23591781

RESUMO

OBJECTIVE: High-mobility group box-1 (HMGB1) is identified as an extracellularly released mediator of inflammation. In this study, specific monoclonal anti-HMGB1 antibody was administered to rats with acute on chronic liver failure (ACLF) in order to evaluate the therapeutic efficacy of HMGB1 blockade. METHODS: All animals were randomly divided into control group, model group and anti-HMGB1 antibody group. The changes in liver histology and apoptosis of liver tissue were detected by H&E staining and TUNEL assay, respectively. The serum levels of alanine aminotransferase (ALT), endotoxin, HMGB1, tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) were examined. The hepatic levels of HMGB1, caspase3, Toll-like receptor 4 (TLR4) and p65 subunit of NF-κB (P65) were also determined. RESULTS: Changes in liver pathology and liver cell apoptosis were greatly attenuated in the anti-HMGB1 antibody group compared with the model group. The serum levels of ALT, endotoxin, TNF-α, IFN-γ and HMGB1 were also decreased in the anti-HMGB1 antibody group. Furthermore, the hepatic levels of HMGB1, TLR4, caspase3 and P65 were also down-regulated by HMGB1 blockade. CONCLUSION: Blockade of HMGB1 can confer a protective effect against ACLF in rats, even 24 h after induction of ACLF. The protective effect of HMGB1 blockade is associated with interactions of HMGB1 with the TLR4 signaling pathway and cytokine production.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Proteína HMGB1/antagonistas & inibidores , Falência Hepática/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Alanina Transaminase/sangue , Animais , Anticorpos Monoclonais/farmacologia , Antígeno CD24 , Proteína HMGB1/imunologia , Proteína HMGB1/metabolismo , Interferon gama/sangue , Lipopolissacarídeos , Falência Hepática/metabolismo , Masculino , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/sangue
12.
Dig Dis Sci ; 58(11): 3198-206, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23861108

RESUMO

BACKGROUND AND OBJECTIVES: Previous studies have shown that betaine prevents alcohol-induced liver injury and improves liver function. The purpose of this study was to investigate the hepatoprotective effects of betaine on nonalcoholic fatty liver disease (NAFLD) and to observe changes of HMGB1/TLR4 signaling. METHODS: Thirty rats were randomly divided into control, model, and betaine groups. The rats in the model and betaine groups were fed a high-fat diet for 12 weeks to induce an animal model of NAFLD. The rats in the betaine group were then intragastrically administered betaine solution at a dose of 400 mg/kg per day for four weeks. Liver histology was examined. Serum levels of ALT, AST, TC, TG, HDL-C, LDL-C, FFA, HMGB1, NF-κB, TLR4, and tHcy were determined and intrahepatic TC, TG, and Hcy levels were assayed. mRNA expression and protein levels of HMGB1, NF-κB, and TLR4 in liver tissue were also determined. RESULTS: Compared with the control group, rats in the model group developed severe liver injury, accompanied by significant increases in serum levels of ALT, AST, TC, TG, LDL-C, FFA, HMGB1, NF-κB, and TLR4, intrahepatic TC, TG, and Hcy content, histological scores for steatosis, inflammation, and necrosis, and mRNA expression and protein levels of HMGB1, NF-κB, and TLR4, and a significant decrease in serum HDL-C (P < 0.05). Compared with the model group, all these indicators were significantly improved by administration of betaine (P < 0.05). CONCLUSIONS: Betaine effectively protects against high-fat-diet-induced NAFLD and improves liver function; the mechanism is probably related to inhibition of HMGB1/TLR4 signaling pathways.


Assuntos
Betaína/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Gorduras na Dieta/efeitos adversos , Regulação da Expressão Gênica/fisiologia , Domínios HMG-Box/fisiologia , Receptor 4 Toll-Like/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Fígado Gorduroso/prevenção & controle , Feminino , Domínios HMG-Box/genética , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica , Ratos , Ratos Sprague-Dawley , Organismos Livres de Patógenos Específicos , Receptor 4 Toll-Like/genética , Aumento de Peso
13.
Hepatobiliary Pancreat Dis Int ; 12(2): 180-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23558073

RESUMO

BACKGROUND: The pathogenesis and progression of acute liver failure (ALF) are closely associated with intestinal endotoxemia because of the high permeability of the intestinal wall. Treatment with ethyl pyruvate (EP) has been shown to protect liver failure effectively. The current study aimed to explore the relationship between proinflammatory cytokines and intestinal permeability, and to investigate whether EP administration might prevent the release of multiple proinflammatory cytokines and decrease intestinal permeability and therefore, protect the liver from injury. METHODS: The ALF model was induced by D-galactosamine in rats. The rats were randomly divided into control (saline, i.p.), model (D-galactosamine, 1.2 g/kg, i.p.), prevention [EP injection (40 mg/kg) 2 hours ahead of D-galactosamine] and treatment groups (EP injection 2 hours after D-galactosamine). Samples were obtained at 12 and 24 hours after ALF induction, respectively. The histology of liver and intestinal tissue was assessed. Serum alanine aminotransferase, endotoxin, D(-)-lactate, diamine oxidase (DAO), tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma) and high mobility group box-1 (HMGB1) were evaluated. The survival of rats was also recorded. RESULTS: The rats in model group showed severe damage to liver tissue and intestinal mucosa 12 and 24 hours after ALF induction. EP significantly improved liver or intestinal injury. In addition, serum endotoxin, D(-)-lactate, DAO, TNF-alpha, IFN-gamma and HMGB1 levels were significantly increased in the model group compared with the control group. There was a positive correlation between intestinal permeability and proinflammatory cytokines. EP significantly reduced serum endotoxin, D(-)-lactate, DAO, TNF-alpha, IFN-gamma and HMGB1 levels. The median survival time was significantly prolonged in both prevention and treatment groups (126 and 120 hours compared with 54 hours in the model group). CONCLUSIONS: EP has protective and therapeutic effects on intestinal mucosa. EP decreases intestinal permeability, and inhibits the release of multiple proinflammatory cytokines in rats with ALF.


Assuntos
Anti-Inflamatórios/farmacologia , Translocação Bacteriana/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Endotoxinas/sangue , Galactosamina , Mediadores da Inflamação/sangue , Mucosa Intestinal/efeitos dos fármacos , Falência Hepática Aguda/tratamento farmacológico , Piruvatos/farmacologia , Animais , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/microbiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citoproteção , Modelos Animais de Doenças , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/imunologia , Falência Hepática Aguda/microbiologia , Falência Hepática Aguda/patologia , Masculino , Permeabilidade , Ratos , Ratos Wistar , Fatores de Tempo
14.
Int J Mol Sci ; 14(6): 11224-37, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23712360

RESUMO

Cisplatin is one of the most widely used chemical drugs for anticancer treatment. Recent studies have focused on the ability of cisplatin to retain the high mobility group box 1 (HMGB1) protein in cisplatin-DNA adducts, thereby preventing its release from the nucleus. Because HMGB1 is a powerful inflammatory mediator in many diseases, the aim of this study is to evaluate the therapeutic effect of cisplatin acute liver failure. In this study, low-dose cisplatin was administered to treat PMA-induced macrophage-like cells induced by PMA and rats with acute liver failure. We found that cell viability and liver injury were greatly improved by cisplatin treatment. The extracellular levels of HMGB1, TNF-α and IFN-γ were also significantly decreased by the administration of cisplatin. During inflammation, nuclear HMGB1 translocates from the nucleus to the cytoplasm. The administration of cisplatin reduced the cytoplasmic levels of HMGB1 and increased nuclear HMGB1 levels in vitro and in vivo. In conclusion, cisplatin can protect against acute liver failure by retaining HMGB1 in the nucleus and preventing its release into the extracellular milieu.


Assuntos
Núcleo Celular/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Citoproteção/efeitos dos fármacos , Proteína HMGB1/metabolismo , Falência Hepática Aguda/tratamento farmacológico , Alanina Transaminase/sangue , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/biossíntese , Falência Hepática Aguda/sangue , Falência Hepática Aguda/enzimologia , Falência Hepática Aguda/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Ratos Wistar , Análise de Sobrevida , Fatores de Tempo
15.
J Integr Med ; 21(5): 464-473, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37620223

RESUMO

OBJECTIVE: Acute liver failure (ALF) is characterized by severe liver dysfunction, rapid progression and high mortality and is difficult to treat. Studies have found that sulforaphane (SFN), a nuclear factor E2-related factor 2 (NRF2) agonist, has anti-inflammatory, antioxidant and anticancer effects, and has certain protective effects on neurodegenerative diseases, cancer and liver fibrosis. This paper aimed to explore the protective effect of SFN in ALF and it possible mechanisms of action. METHODS: Lipopolysaccharide and D-galactosamine were used to induce liver injury in vitro and in vivo. NRF2 agonist SFN and histone deacetylase 6 (HDAC6) inhibitor ACY1215 were used to observe the protective effect and possible mechanisms of SFN in ALF, respectively. Cell viability, lactate dehydrogenase (LDH), Fe2+, glutathione (GSH) and malondialdehyde (MDA) were detected. The expression of HDAC6, NRF2, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 4 (ACSL4) and solute carrier family 7 member 11 (SLC7A11) were detected by Western blotting and immunofluorescence. RESULTS: Our results show that NRF2 was activated by SFN. LDH, Fe2+, MDA and ACSL4 were downregulated, while GSH, GPX4 and SLC7A11 were upregulated by SFN in vitro and in vivo, indicating the inhibitory effect of SFN on ferroptosis. Additionally, HDAC6 expression was decreased in the SFN group, indicating that SFN could downregulate the expression of HDAC6 in ALF. After using the HDAC6 inhibitor, ACY1215, SFN further reduced HDAC6 expression and inhibited ferroptosis, indicating that SFN may inhibit ferroptosis by regulating HDAC6 activity. CONCLUSION: SFN has a protective effect on ALF, and the mechanism may include reduction of ferroptosis through the regulation of HDAC6. Please cite this article as: Zhang YQ, Shi CX, Zhang DM, Zhang LY, Wang LW, Gong ZJ. Sulforaphane, an NRF2 agonist, alleviates ferroptosis in acute liver failure by regulating HDAC6 activity. J Integr Med. 2023; 21(5): 464-473.


Assuntos
Ferroptose , Falência Hepática Aguda , Humanos , Fator 2 Relacionado a NF-E2/genética , Falência Hepática Aguda/tratamento farmacológico , Isotiocianatos/farmacologia , Glutationa , Desacetilase 6 de Histona
16.
Zhonghua Gan Zang Bing Za Zhi ; 20(6): 453-7, 2012 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-23044204

RESUMO

To investigate the molecular mechanism of hydroxycamptothecin (HCPT)-mediated anti-hepatic fibrosis by evaluting its effects on expression of tumor growth factor-beta 1 (TGFb1), alpha-smooth muscle actin (a-SMA) and collagen I (Col I) in hepatic satellite cells (HSCs). Cultured HSCs were treated with different concentrations of HCPT: low-dose group, 0.25 mg/L; middle-dose group, 0.5 mg/L; high-dose group, 0.75 mg/L; and control group, 0 mg/L. Cell proliferation was assessed by the MTT assay. The mRNA expressions of TGFb1, a-SMA and Col I were determined by reverse transcription-polymerase chain reaction. The protein expressions of TGFb1 and a-SMA were detected by Western blot. The content of Col I in the cultured HSCs' supernatant was measured by enzyme-linked immunosorbent assay. The MTT absorbance values of the low-dose group (0.631+/-0.074), middle-dose group (0.469+/- 0.012) and high-dose group (0.204+/- 0.001) were significantly lower than that of the control group (0.793+/-0.098; F = 82.86, P less than 0.01). Compared with the control group, the HCPT-treated groups showed significantly down-regulated gene expressions of TGFb1 (control: 0.716+/-0.064 vs. low: 0.611+/-0.040, middle: 0.510+/-0.014, high: 0.403+/-0.026), a-SMA (control: 0.696+/-0.075 vs. low: 0.579+/-0.037, middle: 0.470+/-0.024, high: 0.299+/-0.017), and Col I (control: 1.019+/-0.056 vs. low: 0.835+/-0.022, middle: 0.696+/-0.055, high: 0.322+/-0.104) (all, P less than 0.01). Meanwhile, HCPT-treated HSCs showed significantly reduced protein expressions of TGFb1 (control: 0.872+/-0.053 vs. low: 0.654+/-0.047, middle: 0.545+/-0.042, high: 0.436+/-0.039) and a-SMA (control: 0.858+/-0.050 vs. low: 0.620+/-0.045, middle: 0.525+/-0.042, high: 0.434+/-0.052) (all, P less than 0.01). The Col I levels secreted by HSCs were significantly lower in the HCPT-treated groups (low: 168.367+/-16.453 ng/ml; middle: 141.284+/-11.731 ng/ml; high: 132.910+/-10.048 ng/ml) than in the control group (188.733 +/-18.299 ng/ml) (all, P less than 0.01). The mechanism of HCPT-mediated anti-hepatic fibrosis may involve down-regulation of TGFb1 expression to inhibit HSC proliferation and activation, as well as reduction of Col I synthesis and secretion.


Assuntos
Actinas/metabolismo , Camptotecina/análogos & derivados , Colágeno Tipo I/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Camptotecina/farmacologia , Proliferação de Células , Células Cultivadas , Células Estreladas do Fígado/citologia , Ratos , Ratos Sprague-Dawley
17.
World J Gastroenterol ; 28(17): 1798-1813, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35633910

RESUMO

BACKGROUND: The occurrence and development of acute liver failure (ALF) is closely related to a series of inflammatory reactions, such as the production of reactive oxygen species (ROS). Hypoxia inducible factor 1α (HIF-1α) is a key factor that regulates oxygen homeostasis and redox, and the stability of HIF-1α is related to the ROS level regulated by Sirtuin (Sirt) family. The activation of Sirt1 will lead to a powerful antioxidant defense system and therapeutic effects in liver disease. However, little is known about the relationship between HIF-1α and Sirt1 in the process of ALF and the molecular mechanism. AIM: To investigate whether HIF-1α may be a target of Sirt1 deacetylation and what the effects on ALF are. METHODS: Mice were administrated lipopolysaccharide (LPS)/D-gal and exposed to hypoxic conditions as animal model, and resveratrol was used as an activator of Sirt1. The cellular model was established with L02 cells stimulated by LPS. N-acetyl-L-cysteine was used to remove ROS, and the expression of Sirt1 was inhibited by nicotinamide. Western blotting was used to detect Sirt1 and HIF-1α activity and related protein expression. The possible signaling pathways involved were analyzed by immunofluorescent staining, co-immunoprecipitation, dihydroethidium staining, and Western blotting. RESULTS: Compared with mice stimulated with LPS alone, the expression of Sirt1 decreased, the level of HIF-1α acetylation increased in hypoxic mice, and the levels of carbonic anhydrase 9 and Bcl-2-adenovirus E1B interacting protein 3 increased significantly, which was regulated by HIF-1α, indicating an increase of HIF-1α activity. Under hypoxia, the down-regulation of Sirt1 activated and acetylated HIF-1α in L02 cells. The inhibition of Sirt1 significantly aggravated this effect and the massive production of ROS. The regulation of ROS was partly through peroxisome proliferator-activated receptor alpha or AMP-activated protein kinase. Resveratrol, a Sirt1 activator, effectively relieved ALF aggravated by hypoxia, the production of ROS, and cell apoptosis. It also induced the deacetylation of HIF-1α and inhibited the activity of HIF-1α. CONCLUSION: Sirt1 may have a protective effect on ALF by inducing HIF-1α deacetylation to reduce ROS.


Assuntos
Falência Hepática Aguda , Espécies Reativas de Oxigênio , Sirtuína 1 , Animais , Hipóxia Celular , Falência Hepática Aguda/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Sirtuína 1/metabolismo
18.
Therap Adv Gastroenterol ; 15: 17562848221138676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506748

RESUMO

Over the past two decades, non-alcoholic fatty liver disease (NAFLD) has become a leading burden of hepatocellular carcinoma and liver transplantation. Although the exact pathogenesis of NAFLD has not been fully elucidated, recent hypotheses placed more emphasis on the crucial role of the gut microbiome and its derivatives. Reportedly, microbial metabolites such as short-chain fatty acids, amino acid metabolites (indole and its derivatives), bile acids (BAs), trimethylamine N-oxide (TMAO), and endogenous ethanol exhibit sophisticated bioactive properties. These molecules regulate host lipid, glucose, and BAs metabolic homeostasis via modulating nutrient absorption, energy expenditure, inflammation, and the neuroendocrine axis. Consequently, a broad range of research has studied the therapeutic effects of microbiota-derived metabolites. In this review, we explore the interaction of microbial products and NAFLD. We also discuss the regulatory role of existing NAFLD therapies on metabolite levels and investigate the potential of targeting those metabolites to relieve NAFLD.

19.
Front Physiol ; 12: 683526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276405

RESUMO

Chronic liver inflammation is a complex pathological process under different stress conditions, and the roles of stellate cells and macrophages in chronic liver inflammation have been widely reported. Moderate liver inflammation can protect the liver from damage and facilitate the recovery of liver injury. However, an inflammatory response that is too intense can result in massive death of hepatocytes, which leads to irreversible damage to the liver parenchyma. Epigenetic regulation plays a key part in liver inflammation. This study reviews the regulation of epigenetics on stellate cells and macrophages to explore the new mechanisms of epigenetics on liver inflammation and provide new ideas for the treatment of liver disease.

20.
Hepatobiliary Pancreat Dis Int ; 9(5): 499-507, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20943459

RESUMO

BACKGROUND: Liver failure in chronic hepatitis B (CHB) patients is a severe, life-threatening condition. Intestinal endotoxemia plays a significant role in the progress to liver failure. High mobility group box-1 (HMGB1) protein is involved in the process of endotoxemia. Regulatory T (Treg) cells maintain immune tolerance and contribute to the immunological hyporesponsiveness against HBV infection. However, the roles of HMGB1 and Treg cells in the pathogenesis of liver failure in CHB patients, and whether HMGB1 affects the immune activity of Treg cells are poorly known at present, and so were explored in this study. METHODS: The levels of HMGB1 expression were detected by ELISA, real-time RT-PCR, and Western blotting, and the percentage of CD4+CD25+CD127low Treg cells among CD4+ cells was detected by flow cytometry in liver failure patients with chronic HBV infection, CHB patients, and healthy controls. Then, CD4+CD25+CD127low Treg cells isolated from the peripheral blood mononuclear cells from CHB patients were stimulated with HMGB1 at different concentrations or at various intervals. The effect of HMGB1 on the immune activity of Treg cells was assessed by a suppression assay of the allogeneic mixed lymphocyte response. The levels of forkhead box P3 (Foxp3) expression in Treg cells treated with HMGB1 were detected by RT-PCR and Western blotting. RESULTS: A higher level of HMGB1 expression and a lower percentage of Treg cells within the population of CD4+ cells were found in liver failure patients than in CHB patients (82.6+/-20.1 µg/L vs. 34.2+/-13.7 µg/L; 4.55+/-1.34% vs. 9.52+/-3.89%, respectively). The immune activity of Treg cells was significantly weakened and the levels of Foxp3 expression were reduced in a dose- or time-dependent manner when Treg cells were stimulated with HMGB1 in vitro. CONCLUSIONS: The high level of HMGB1 and the low percentage of Treg cells play an important role in the pathogenesis of liver failure in patients with chronic HBV infection. Moreover, HMGB1 can weaken the immune activity of Treg cells. It is suggested that effectively inhibiting HMGB1 expression could be a feasible way to treat liver failure by suppressing endotoxemia and enhancing Treg cell activity.


Assuntos
Proteína HMGB1/imunologia , Hepatite B Crônica/imunologia , Falência Hepática/imunologia , Fígado/imunologia , Linfócitos T Reguladores/imunologia , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Proteína HMGB1/administração & dosagem , Proteína HMGB1/sangue , Hepatite B Crônica/patologia , Humanos , Fígado/patologia , Falência Hepática/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA