Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(11): e1011026, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37948444

RESUMO

The meiotic recombination checkpoint reinforces the order of events during meiotic prophase I, ensuring the accurate distribution of chromosomes to the gametes. The AAA+ ATPase Pch2 remodels the Hop1 axial protein enabling adequate levels of Hop1-T318 phosphorylation to support the ensuing checkpoint response. While these events are localized at chromosome axes, the checkpoint activating function of Pch2 relies on its cytoplasmic population. In contrast, forced nuclear accumulation of Pch2 leads to checkpoint inactivation. Here, we reveal the mechanism by which Pch2 travels from the cell nucleus to the cytoplasm to maintain Pch2 cellular homeostasis. Leptomycin B treatment provokes the nuclear accumulation of Pch2, indicating that its nucleocytoplasmic transport is mediated by the Crm1 exportin recognizing proteins containing Nuclear Export Signals (NESs). Consistently, leptomycin B leads to checkpoint inactivation and impaired Hop1 axial localization. Pch2 nucleocytoplasmic traffic is independent of its association with Zip1 and Orc1. We also identify a functional NES in the non-catalytic N-terminal domain of Pch2 that is required for its nucleocytoplasmic trafficking and proper checkpoint activity. In sum, we unveil another layer of control of Pch2 function during meiosis involving nuclear export via the exportin pathway that is crucial to maintain the critical balance of Pch2 distribution among different cellular compartments.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Meiose/genética , Saccharomyces cerevisiae/genética , Transporte Ativo do Núcleo Celular/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a DNA/genética , Carioferinas/genética , Carioferinas/metabolismo , Homeostase
2.
Nucleic Acids Res ; 44(16): 7722-41, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27257060

RESUMO

Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes.


Assuntos
Adenosina Trifosfatases/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Meiose , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo Sinaptonêmico/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Pareamento Cromossômico , Quebras de DNA de Cadeia Dupla , Genes Supressores , Testes Genéticos , Viabilidade Microbiana , Modelos Biológicos , Mutação/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Esporos Fúngicos/fisiologia
3.
Cells ; 10(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34685541

RESUMO

During meiosis, the budding yeast polo-like kinase Cdc5 is a crucial driver of the prophase I to meiosis I (G2/M) transition. The meiotic recombination checkpoint restrains cell cycle progression in response to defective recombination to ensure proper distribution of intact chromosomes to the gametes. This checkpoint detects unrepaired DSBs and initiates a signaling cascade that ultimately inhibits Ndt80, a transcription factor required for CDC5 gene expression. Previous work revealed that overexpression of CDC5 partially alleviates the checkpoint-imposed meiotic delay in the synaptonemal complex-defective zip1Δ mutant. Here, we show that overproduction of a Cdc5 version (Cdc5-ΔN70), lacking the N-terminal region required for targeted degradation of the protein by the APC/C complex, fails to relieve the zip1Δ-induced meiotic delay, despite being more stable and reaching increased protein levels. However, precise mutation of the consensus motifs for APC/C recognition (D-boxes and KEN) has no effect on Cdc5 stability or function during meiosis. Compared to the zip1Δ single mutant, the zip1Δ cdc5-ΔN70 double mutant exhibits an exacerbated meiotic block and reduced levels of Ndt80 consistent with persistent checkpoint activity. Finally, using a CDC5-inducible system, we demonstrate that the N-terminal region of Cdc5 is essential for its checkpoint erasing function. Thus, our results unveil an additional layer of regulation of polo-like kinase function in meiotic cell cycle control.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Regulação para Baixo , Meiose , Quinase 1 Polo-Like
4.
Front Cell Dev Biol ; 8: 594092, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195270

RESUMO

The H2A.Z histone variant is deposited into the chromatin by the SWR1 complex, affecting multiple aspects of meiosis. We describe here a SWR1-independent localization of H2A.Z at meiotic telomeres and the centrosome. We demonstrate that H2A.Z colocalizes and interacts with Mps3, the SUN component of the linker of nucleoskeleton, and cytoskeleton (LINC) complex that spans the nuclear envelope and links meiotic telomeres to the cytoskeleton, promoting meiotic chromosome movement. H2A.Z also interacts with the meiosis-specific Ndj1 protein that anchors telomeres to the nuclear periphery via Mps3. Telomeric localization of H2A.Z depends on Ndj1 and the N-terminal domain of Mps3. Although telomeric attachment to the nuclear envelope is maintained in the absence of H2A.Z, the distribution of Mps3 is altered. The velocity of chromosome movement during the meiotic prophase is reduced in the htz1Δ mutant lacking H2A.Z, but it is unaffected in swr1Δ cells. We reveal that H2A.Z is an additional LINC-associated factor that contributes to promote telomere-driven chromosome motion critical for error-free gametogenesis.

5.
Genetics ; 209(4): 997-1015, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29853474

RESUMO

Among the collection of chromatin modifications that influence its function and structure, the substitution of canonical histones by the so-called histone variants is one of the most prominent actions. Since crucial meiotic transactions are modulated by chromatin, here we investigate the functional contribution of the H2A.Z histone variant during both unperturbed meiosis and upon challenging conditions where the meiotic recombination checkpoint is triggered in budding yeast by the absence of the synaptonemal complex component Zip1 We have found that H2A.Z localizes to meiotic chromosomes in an SWR1-dependent manner. Although meiotic recombination is not substantially altered, the htz1 mutant (lacking H2A.Z) shows inefficient meiotic progression, impaired sporulation, and reduced spore viability. These phenotypes are likely accounted for by the misregulation of meiotic gene expression landscape observed in htz1 In the zip1 mutant, the absence of H2A.Z results in a tighter meiotic arrest imposed by the meiotic recombination checkpoint. We have found that Mec1-dependent Hop1-T318 phosphorylation and the ensuing Mek1 activation are not significantly altered in zip1 htz1; however, downstream checkpoint targets, such as the meiosis I-promoting factors Ndt80, Cdc5, and Clb1, are drastically downregulated. The study of the checkpoint response in zip1 htz1 has also allowed us to reveal the existence of an additional function of the Swe1 kinase, independent of CDK inhibitory phosphorylation, which is relevant to restrain meiotic cell cycle progression. In summary, our study shows that the H2A.Z histone variant impacts various aspects of meiotic development adding further insight into the relevance of chromatin dynamics for accurate gametogenesis.


Assuntos
Cromossomos Fúngicos/metabolismo , Histonas/metabolismo , Meiose , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA