Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Electrocardiol ; 77: 58-61, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36634462

RESUMO

INTRODUCTION: Electrocardiographic Imaging is a non-invasive technique that requires cardiac Imaging for the reconstruction of cardiac electrical activity. In this study, we explored imageless ECGI by quantifying the errors of using heart meshes with either an inaccurate location inside the thorax or an inaccurate geometry. METHODS: Multiple­lead body surface recordings of 25 atrial fibrillation (AF) patients were recorded. Cardiac atrial meshes were obtained by segmentation of medical images obtained for each patient. ECGI was computed with each patient's segmented atrial mesh and compared with the ECGI obtained under errors in the atrial mesh used for ECGI estimation. We modeled both the uncertainty in the location of the atria inside the thorax by artificially translating the atria inside the thorax and the geometry of the atrial mesh by using an atrial mesh in a reference database. ECGI signals obtained with the actual meshes and the translated or estimated meshes were compared in terms of their correlation coefficients, relative difference measurement star, and errors in the dominant frequency (DF) estimation in epicardial nodes. RESULTS: CC between ECGI signals obtained after translating the actual atrial meshes from the original position by 1 cm was above 0.97. CC between ECGIs obtained with patient specific atrial geometry and estimated atrial geometries was 0.93 ± 0.11. Mean errors in DF estimation using an estimated atrial mesh were 7.6 ± 5.9%. CONCLUSION: Imageless ECGI can provide a robust estimation of cardiac electrophysiological parameters such as activation rates even during complex arrhythmias. Furthermore, it can allow more widespread use of ECGI in clinical practice.


Assuntos
Fibrilação Atrial , Eletrocardiografia , Humanos , Eletrocardiografia/métodos , Incerteza , Átrios do Coração/diagnóstico por imagem , Diagnóstico por Imagem , Mapeamento Potencial de Superfície Corporal/métodos
2.
Pacing Clin Electrophysiol ; 44(3): 519-527, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33538337

RESUMO

BACKGROUND: Multipoint pacing (MPP) in cardiac resynchronization therapy (CRT) activates the left ventricle from two locations, thereby shortening the QRS duration and enabling better resynchronization; however, compared with conventional CRT, MPP reduces battery longevity. On the other hand, electrocardiogram-based optimization using the fusion-optimized intervals (FOI) method achieves more significant reverse remodeling than nominal CRT programming. Our study aimed to determine whether MPP could attain better resynchronization than single-point pacing (SPP) optimized by FOI. METHODS: This prospective study included 32 consecutive patients who successfully received CRT devices with MPP capabilities. After implantation, the QRS duration was measured during intrinsic rhythm and with three pacing configurations: MPP, SPP-FOI, and MPP-FOI. In 14 patients, biventricular activation times (by electrocardiographic imaging, ECGI) were obtained during intrinsic rhythm and for each pacing configuration to validate the findings. Device battery longevity was estimated at the 45-day follow-up. RESULTS: The SPP-FOI method achieved greater QRS shortening than MPP (-56 ± 16 vs. -42 ± 17 ms, p < .001). Adding MPP to the best FOI programming did not result in further shortening (MPP-FOI: -58 ± 14 ms, p = .69). Although biventricular activation times did not differ significantly among the three pacing configurations, only the two FOI configurations achieved significant shortening compared with intrinsic rhythm. The estimated battery longevity was longer with SPP than with MPP (8.1 ± 2.3 vs. 6.3 ± 2.0 years, p = .03). CONCLUSIONS: SPP optimized by FOI resulted in better resynchronization and longer battery duration than MPP.


Assuntos
Terapia de Ressincronização Cardíaca/métodos , Disfunção Ventricular Esquerda/terapia , Idoso , Ecocardiografia , Fontes de Energia Elétrica , Eletrocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Disfunção Ventricular Esquerda/fisiopatologia
3.
Front Physiol ; 14: 1074160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923288

RESUMO

Acute myocardial ischemia induces hyperkalemia (accumulation of extracellular potassium), a major perpetrator of lethal reentrant ventricular arrhythmias. Despite considerable experimental efforts to explain this pathology in the last decades, the intimate mechanisms behind hyperkalemia remain partially unknown. In order to investigate these mechanisms, we developed a novel computational model of acute myocardial ischemia which couples a) an electrophysiologically detailed human cardiomyocyte model that incorporates modifications to account for ischemia-induced changes in transmembrane currents, with b) a model of cardiac tissue and extracellular K + transport. The resulting model is able to reproduce and explain the triphasic time course of extracellular K + concentration within the ischemic zone, with values of [ K + ] o close to 14 mmol/L in the central ischemic zone after 30 min. In addition, the formation of a [ K + ] o border zone of approximately 1.2 cm 15 min after the onset of ischemia is predicted by the model. Our results indicate that the primary rising phase of [ K + ] o is mainly due to the imbalance between K + efflux, that increases slightly, and K + influx, that follows a reduction of the NaK pump activity by more than 50%. The onset of the plateau phase is caused by the appearance of electrical alternans (a novel mechanism identified by the model), which cause an abrupt reduction in the K + efflux. After the plateau, the secondary rising phase of [ K + ] o is caused by a subsequent imbalance between the K + influx, which continues to decrease slowly, and the K + efflux, which remains almost constant. Further, the study shows that the modulation of these mechanisms by the electrotonic coupling is the main responsible for the formation of the ischemic border zone in tissue, with K + transport playing only a minor role. Finally, the results of the model indicate that the injury current established between the healthy and the altered tissue is not sufficient to depolarize non-ischemic cells within the healthy tissue.

4.
Front Physiol ; 13: 908364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105286

RESUMO

Introduction: Electrocardiographic Imaging (ECGI) allows computing the electrical activity in the heart non-invasively using geometrical information of the patient and multiple body surface signals. In the present study we investigate the influence of the number of nodes of geometrical meshes and recording ECG electrodes distribution to compute ECGI during atrial fibrillation (AF). Methods: Torso meshes from 100 to 2000 nodes heterogeneously and homogeneously distributed were compared. Signals from nine AF realistic mathematical simulations were used for computing the ECGI. Results for each torso mesh were compared with the ECGI computed with a 4,000 nodes reference torso. In addition, real AF recordings from 25 AF patients were used to compute ECGI in torso meshes from 100 to 1,000 nodes. Results were compared with a reference torso of 2000 nodes. Torsos were remeshed either by reducing the number of nodes while maximizing the overall shape preservation and then assigning the location of the electrodes as the closest node in the new mesh or by forcing the remesher to place a node at each electrode location. Correlation coefficients, relative difference measurements and relative difference of dominant frequencies were computed to evaluate the impact on signal morphology of each torso mesh. Results: For remeshed torsos where electrodes match with a geometrical node in the mesh, all mesh densities presented similar results. On the other hand, in torsos with electrodes assigned to closest nodes in remeshed geometries performance metrics were dependent on mesh densities, with correlation coefficients ranging from 0.53 ± 0.06 to 0.92 ± 0.04 in simulations or from 0.42 ± 0.38 to 0.89 ± 0.2 in patients. Dominant frequency relative errors showed the same trend with values from 1.14 ± 0.26 to 0.55 ± 0.21 Hz in simulations and from 0.91 ± 0.56 to 0.45 ± 0.41 Hz in patients. Conclusion: The effect of mesh density in ECGI is minimal when the location of the electrode is preserved as a node in the mesh. Torso meshes constructed without imposing electrodes to constitute nodes in the torso geometry should contain at least 400 nodes homogeneously distributed so that a distance between nodes is below 4 cm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA