Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Genet Sel Evol ; 56(1): 33, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698321

RESUMO

BACKGROUND: Recursive models are a category of structural equation models that propose a causal relationship between traits. These models are more parameterized than multiple trait models, and they require imposing restrictions on the parameter space to ensure statistical identification. Nevertheless, in certain situations, the likelihood of recursive models and multiple trait models are equivalent. Consequently, the estimates of variance components derived from the multiple trait mixed model can be converted into estimates under several recursive models through LDL' or block-LDL' transformations. RESULTS: The procedure was employed on a dataset comprising five traits (birth weight-BW, weight at 90 days-W90, weight at 210 days-W210, cold carcass weight-CCW and conformation-CON) from the Pirenaica beef cattle breed. These phenotypic records were unequally distributed among 149,029 individuals and had a high percentage of missing data. The pedigree used consisted of 343,753 individuals. A Bayesian approach involving a multiple-trait mixed model was applied using a Gibbs sampler. The variance components obtained at each iteration of the Gibbs sampler were subsequently used to estimate the variance components within three distinct recursive models. CONCLUSIONS: The LDL' or block-LDL' transformations applied to the variance component estimates achieved from a multiple trait mixed model enabled inference across multiple sets of recursive models, with the sole prerequisite of being likelihood equivalent. Furthermore, the aforementioned transformations simplify the handling of missing data when conducting inference within the realm of recursive models.


Assuntos
Modelos Genéticos , Animais , Bovinos/genética , Teorema de Bayes , Fenótipo , Cruzamento/métodos , Cruzamento/normas , Peso ao Nascer/genética , Linhagem , Característica Quantitativa Herdável
2.
Genet Sel Evol ; 56(1): 19, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491422

RESUMO

BACKGROUND: Growth rate is an important component of feed conversion efficiency in cattle and varies across the different stages of the finishing period. The metabolic effect of the rumen microbiome is essential for cattle growth, and investigating the genomic and microbial factors that underlie this temporal variation can help maximize feed conversion efficiency at each growth stage. RESULTS: By analysing longitudinal body weights during the finishing period and genomic and metagenomic data from 359 beef cattle, our study demonstrates that the influence of the host genome on the functional rumen microbiome contributes to the temporal variation in average daily gain (ADG) in different months (ADG1, ADG2, ADG3, ADG4). Five hundred and thirty-three additive log-ratio transformed microbial genes (alr-MG) had non-zero genomic correlations (rg) with at least one ADG-trait (ranging from |0.21| to |0.42|). Only a few alr-MG correlated with more than one ADG-trait, which suggests that a differential host-microbiome determinism underlies ADG at different stages. These alr-MG were involved in ribosomal biosynthesis, energy processes, sulphur and aminoacid metabolism and transport, or lipopolysaccharide signalling, among others. We selected two alternative subsets of 32 alr-MG that had a non-uniform or a uniform rg sign with all the ADG-traits, regardless of the rg magnitude, and used them to develop a microbiome-driven breeding strategy based on alr-MG only, or combined with ADG-traits, which was aimed at shaping the rumen microbiome towards increased ADG at all finishing stages. Combining alr-MG information with ADG records increased prediction accuracy of genomic estimated breeding values (GEBV) by 11 to 22% relative to the direct breeding strategy (using ADG-traits only), whereas using microbiome information, only, achieved lower accuracies (from 7 to 41%). Predicted selection responses varied consistently with accuracies. Restricting alr-MG based on their rg sign (uniform subset) did not yield a gain in the predicted response compared to the non-uniform subset, which is explained by the absence of alr-MG showing non-zero rg at least with more than one of the ADG-traits. CONCLUSIONS: Our work sheds light on the role of the microbial metabolism in the growth trajectory of beef cattle at the genomic level and provides insights into the potential benefits of using microbiome information in future genomic breeding programs to accurately estimate GEBV and increase ADG at each finishing stage in beef cattle.


Assuntos
Genômica , Microbiota , Bovinos/genética , Animais , Fenótipo , Peso Corporal , Metagenoma , Ração Animal
3.
J Dairy Sci ; 107(3): 1510-1522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37690718

RESUMO

The Resilient Dairy Genome Project (RDGP) is an international large-scale applied research project that aims to generate genomic tools to breed more resilient dairy cows. In this context, improving feed efficiency and reducing greenhouse gases from dairy is a high priority. The inclusion of traits related to feed efficiency (e.g., dry matter intake [DMI]) or greenhouse gases (e.g., methane emissions [CH4]) relies on available genotypes as well as high quality phenotypes. Currently, 7 countries (i.e., Australia, Canada, Denmark, Germany, Spain, Switzerland, and United States) contribute with genotypes and phenotypes including DMI and CH4. However, combining data are challenging due to differences in recording protocols, measurement technology, genotyping, and animal management across sources. In this study, we provide an overview of how the RDGP partners address these issues to advance international collaboration to generate genomic tools for resilient dairy. Specifically, we describe the current state of the RDGP database, data collection protocols in each country, and the strategies used for managing the shared data. As of February 2022, the database contains 1,289,593 DMI records from 12,687 cows and 17,403 CH4 records from 3,093 cows and continues to grow as countries upload new data over the coming years. No strong genomic differentiation between the populations was identified in this study, which may be beneficial for eventual across-country genomic predictions. Moreover, our results reinforce the need to account for the heterogeneity in the DMI and CH4 phenotypes in genomic analysis.


Assuntos
Gases de Efeito Estufa , Feminino , Animais , Bovinos , Genômica , Genótipo , Austrália , Metano
4.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892353

RESUMO

Mycobacterium bovis (Mb) is the causative agent of bovine tuberculosis (bTb). Genetic selection aiming to identify less susceptible animals has been proposed as a complementary measure in ongoing programs toward controlling Mb infection. However, individual animal phenotypes for bTb based on interferon-gamma (IFNÉ£) and its use in bovine selective breeding programs have not been explored. In the current study, IFNÉ£ production was measured using a specific IFNÉ£ ELISA kit in bovine purified protein derivative (bPPD)-stimulated blood samples collected from Holstein cattle. DNA isolated from the peripheral blood samples collected from the animals included in the study was genotyped with the EuroG Medium Density bead Chip, and the genotypes were imputed to whole-genome sequences. A genome-wide association analysis (GWAS) revealed that the IFNÉ£ in response to bPPD was associated with a specific genetic profile (heritability = 0.23) and allowed the identification of 163 SNPs, 72 quantitative trait loci (QTLs), 197 candidate genes, and 8 microRNAs (miRNAs) associated with this phenotype. No negative correlations between this phenotype and other phenotypes and traits included in the Spanish breeding program were observed. Taken together, our results define a heritable and distinct immunogenetic profile associated with strong production of IFNÉ£ in response to Mb.


Assuntos
Estudo de Associação Genômica Ampla , Interferon gama , Mycobacterium bovis , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tuberculose Bovina , Animais , Bovinos , Mycobacterium bovis/imunologia , Interferon gama/genética , Interferon gama/metabolismo , Tuberculose Bovina/genética , Tuberculose Bovina/imunologia , Tuberculose Bovina/microbiologia , Fenótipo , Genótipo
5.
BMC Genomics ; 24(1): 605, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821814

RESUMO

Genome-wide association studies (GWAS) have identified host genetic variants associated with paratuberculosis (PTB) susceptibility. Most of the GWAS-identified SNPs are in non-coding regions. Connecting these non-coding variants and downstream affected genes is a challenge and, up to date, only a few functional mutations or expression quantitative loci (cis-eQTLs) associated with PTB susceptibility have been identified. In the current study, the associations between imputed whole-genome sequence genotypes and whole RNA-Sequencing data from peripheral blood (PB) and ileocecal valve (ICV) samples of Spanish Holstein cows (N = 16) were analyzed with TensorQTL. This approach allowed the identification of 88 and 37 cis-eQTLs regulating the expression levels of 90 and 37 genes in PB and ICV samples, respectively (False discorey rate, FDR ≤ 0.05). Next, we applied summary-based data Mendelian randomization (SMR) to integrate the cis-eQTL dataset with GWAS data obtained from a cohort of 813 culled cattle that were classified according to the presence or absence of PTB-associated histopathological lesions in gut tissues. After multiple testing corrections (FDR ≤ 0.05), we identified two novel cis-eQTLs affecting the expression of the early growth response factor 4 (EGR4) and the bovine neuroblastoma breakpoint family member 6-like protein isoform 2 (MGC134040) that showed pleiotropic associations with the presence of multifocal and diffuse lesions in gut tissues; P = 0.002 and P = 0.017, respectively. While EGR4 acts as a brake on T-cell proliferation and cytokine production through interaction with the nuclear factor Kappa ß (NF-κß), MGC134040 is a target gene of NF-κß. Our findings provide a better understanding of the genetic factors influencing PTB outcomes, confirm that the multifocal lesions are localized/confined lesions that have different underlying host genetics than the diffuse lesions, and highlight regulatory SNPs and regulated-gene targets to design future functional studies.


Assuntos
Paratuberculose , Humanos , Feminino , Bovinos , Animais , Paratuberculose/genética , Estudo de Associação Genômica Ampla/veterinária , Análise da Randomização Mendeliana , Locos de Características Quantitativas , Expressão Gênica , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Fatores de Transcrição de Resposta de Crescimento Precoce/genética
6.
J Dairy Sci ; 105(6): 5124-5140, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35346462

RESUMO

Direct measurements of methane (CH4) from individual animals are difficult and expensive. Predictions based on proxies for CH4 are a viable alternative. Most prediction models are based on multiple linear regressions (MLR) and predictor variables that are not routinely available in commercial farms, such as dry matter intake (DMI) and diet composition. The use of machine learning (ML) algorithms to predict CH4 emissions from across-country heterogeneous data sets has not been reported. The objectives were to compare performances of ML ensemble algorithm random forest (RF) and MLR models in predicting CH4 emissions from proxies in dairy cows, and assess effects of imputing missing data points on prediction accuracy. Data on CH4 emissions and proxies for CH4 from 20 herds were provided by 10 countries. The integrated data set contained 43,519 records from 3,483 cows, with 18.7% missing data points imputed using k-nearest neighbor imputation. Three data sets were created, 3k (no missing records), 21k (missing DMI imputed from milk, fat, protein, body weight), and 41k (missing DMI, milk fat, and protein records imputed). These data sets were used to test scenarios (with or without DMI, imputed vs. nonimputed DMI, milk fat, and protein), and prediction models (RF vs. MLR). Model predictive ability was evaluated within and between herds through 10-fold cross-validation. Prediction accuracy was measured as correlation between observed and predicted CH4, root mean squared error (RMSE) and mean normalized discounted cumulative gain (NDCG). Inclusion of DMI in the model improved within and between-herd prediction accuracy to 0.77 (RMSE = 23.3%) and 0.58 (RMSE = 31.9%) in RF and to 0.50 (RMSE = 0.327) and 0.13 (RMSE = 42.71) in MLR, respectively than when DMI was not included in the predictive model. When missing DMI records were imputed, within and between-herd accuracy increased to 0.84 (RMSE = 18.5%) and 0.63 (RMSE = 29.9%), respectively. In all scenarios, RF models out-performed MLR models. Results suggest routinely measured variables from dairy farms can be used in developing globally robust prediction models for CH4 if coupled with state-of-the-art techniques for imputation and advanced ML algorithms for predictive modeling.


Assuntos
Lactação , Metano , Animais , Bovinos , Dieta/veterinária , Feminino , Intestino Delgado/metabolismo , Metano/metabolismo , Leite/química
7.
Appl Microbiol Biotechnol ; 105(8): 3225-3234, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33792750

RESUMO

Nanopore sequencing has emerged as a rapid and cost-efficient tool for diagnostic and epidemiological surveillance of SARS-CoV-2 during the COVID-19 pandemic. This study compared the results from sequencing the SARS-CoV-2 genome using R9 vs R10 flow cells and a Rapid Barcoding Kit (RBK) vs a Ligation Sequencing Kit (LSK). The R9 chemistry provided a lower error rate (3.5%) than R10 chemistry (7%). The SARS-CoV-2 genome includes few homopolymeric regions. Longest homopolymers were composed of 7 (TTTTTTT) and 6 (AAAAAA) nucleotides. The R10 chemistry resulted in a lower rate of deletions in thymine and adenine homopolymeric regions than the R9, at the expenses of a larger rate (~10%) of mismatches in these regions. The LSK had a larger yield than the RBK, and provided longer reads than the RBK. It also resulted in a larger percentage of aligned reads (99 vs 93%) and also in a complete consensus genome. The results from this study suggest that the LSK preparation library provided longer DNA fragments which contributed to a better assembly of the SARS-CoV-2, despite an impaired detection of variants in a R10 flow cell. Nanopore sequencing could be used in epidemiological surveillance of SARS-CoV-2. KEY POINTS: • Sequencing SARS-CoV-2 genome is of great importance for the pandemic surveillance. • Nanopore offers a low cost and accurate method to sequence SARS-CoV-2 genome. • Ligation sequencing is preferred rather than the rapid kit using transposases.


Assuntos
Genoma Viral , Nanoporos , SARS-CoV-2/genética , Análise de Sequência de RNA/métodos
8.
J Dairy Sci ; 104(7): 8135-8151, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33896632

RESUMO

The rumen is a complex microbial system of substantial importance in terms of greenhouse gas emissions and feed efficiency. This study proposes combining metagenomic and host genomic data for selective breeding of the cow hologenome toward reduced methane emissions. We analyzed nanopore long reads from the rumen metagenome of 437 Holstein cows from 14 commercial herds in 4 northern regions in Spain. After filtering, data were treated as compositional. The large complexity of the rumen microbiota was aggregated, through principal component analysis (PCA), into few principal components (PC) that were used as proxies of the core metagenome. The PCA allowed us to condense the huge and fuzzy taxonomical and functional information from the metagenome into a few PC. Bivariate animal models were applied using these PC and methane production as phenotypes. The variability condensed in these PC is controlled by the cow genome, with heritability estimates for the first PC of ~0.30 at all taxonomic levels, with a large probability (>83%) of the posterior distribution being >0.20 and with the 95% highest posterior density interval (95%HPD) not containing zero. Most genetic correlation estimates between PC1 and methane were large (≥0.70), with most of the posterior distribution (>82%) being >0.50 and with its 95%HPD not containing zero. Enteric methane production was positively associated with relative abundance of eukaryotes (protozoa and fungi) through the first component of the PCA at phylum, class, order, family, and genus. Nanopore long reads allowed the characterization of the core rumen metagenome using whole-metagenome sequencing, and the purposed aggregated variables could be used in animal breeding programs to reduce methane emissions in future generations.


Assuntos
Metano , Microbiota , Animais , Bovinos/genética , Feminino , Fermentação , Metano/metabolismo , Microbiota/genética , Rúmen/metabolismo , Seleção Artificial , Espanha
9.
J Anim Breed Genet ; 137(1): 36-48, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31617268

RESUMO

The advent of metagenomics in animal breeding poses the challenge of statistically modelling the relationship between the microbiome, the host genetics and relevant complex traits. A set of structural equation models (SEMs) of a recursive type within a Markov chain Monte Carlo (MCMC) framework was proposed here to jointly analyse the host-metagenome-phenotype relationship. A non-recursive bivariate model was set as benchmark to compare the recursive model. The relative abundance of rumen microbes (RA), methane concentration (CH4 ) and the host genetics was used as a case of study. Data were from 337 Holstein cows from 12 herds in the north and north-west of Spain. Microbial composition from each cow was obtained from whole metagenome sequencing of ruminal content samples using a MinION device from Oxford Nanopore Technologies. Methane concentration was measured with Guardian® NG infrared gas monitor from Edinburgh Sensors during cow's visits to the milking automated system. A quarterly average from the methane eructation peaks for each cow was computed and used as phenotype for CH4 . Heritability of CH4 was estimated at 0.12 ± 0.01 in both the recursive and bivariate models. Likewise, heritability estimates for the relative abundance of the taxa overlapped between models and ranged between 0.08 and 0.48. Genetic correlations between the microbial composition and CH4 ranged from -0.76 to 0.65 in the non-recursive bivariate model and from -0.68 to 0.69 in the recursive model. Regardless of the statistical model used, positive genetic correlations with methane were estimated consistently for the seven genera pertaining to the Ciliophora phylum, as well as for those genera belonging to the Euryarchaeota (Methanobrevibacter sp.), Chytridiomycota (Neocallimastix sp.) and Fibrobacteres (Fibrobacter sp.) phyla. These results suggest that rumen's whole metagenome recursively regulates methane emissions in dairy cows and that both CH4 and the microbiota compositions are partially controlled by the host genotype.


Assuntos
Bovinos/metabolismo , Bovinos/microbiologia , Indústria de Laticínios , Metano/biossíntese , Microbiota , Modelos Estatísticos , Animais , Cadeias de Markov , Método de Monte Carlo
10.
Curr Microbiol ; 75(6): 651-657, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29318340

RESUMO

There is a growing interest in understanding the role of the gut microbiome on productive and meat quality-related traits in livestock species in order to develop new useful tools for improving pig production systems and industry. Faecal samples are analysed as a proxy of gut microbiota and here the selection of suitable protocols for faecal sampling and DNA isolation is a critical first step in order to obtain reliable results, even more to compare results obtained from different studies. The aim of the current study was to establish in a cost-effective way, using automated ribosomal intergenic spacer analysis technique, a protocol for porcine faecal sampling and storage at farm and slaughterhouse and to determine the most efficient microbiota DNA isolation kit among those most widely used. Operational Taxonomic Unit profiles were compared from Iberian pig faecal samples collected from rectum or ground, stored with liquid N2, room temperature or RNAlater, and processed with QIAamp DNA Stool (Qiagen), PowerFecal DNA Isolation (Mobio) or SpeedTools Tissue DNA extraction (Biotools) commercial kits. The results, focused on prokaryote sampling, based on DNA yield and quality, OTU number and Sørensen similarity Indexes, indicate that the recommended protocol for porcine faecal microbiome sampling at farm should include: the collection from porcine rectum to avoid contamination; the storage in liquid N2 or even at room temperature, but not in RNAlater; and the isolation of microbiota DNA using PowerFecal DNA Isolation kit. These conditions provide more reliable DNA samples for further microbiome analysis.


Assuntos
Fezes/microbiologia , Microbiota/genética , Animais , DNA Bacteriano/genética , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Suínos
11.
J Anim Breed Genet ; 135(5): 366-377, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30033566

RESUMO

This study evaluates two potential scenarios for including methane (CH4 ) emissions in the breeding objectives of beef cattle, using the Spanish population of Blonde d'Aquitaine as a case of study. First, CH4 emissions were included as a cost using a shadow carbon price of 1.22€/CH4 kg (0.044€/CO2 kg) (carbon tax scenario). In the other scenario, a CH4 quota was applied, optimizing emissions per unit of product. The current production system was used as benchmark scenario (Scenario 1). The economic value of CH4 was calculated under all scenarios using a bioeconomic model that translated the production system into a mathematical function. Then, CH4 emissions were included with proper relative weight in the selection index under each scenario. The economic value of CH4 production from cows was -0.54€/year and -0.16€/year in a carbon tax and in a CH4 quota scenario, respectively. Economic values for CH4 production from fattening calves were -1.22€/year and -0.34€/year in a carbon tax and a quota scenario, respectively. The relative weights of total CH4 traits in the indices were 4.9% and 1.8% in a carbon tax and quota scenario. The carbon tax scenario led to smaller cows (-7.59 kg of mature weight) and a decrease in carcass weight gain of calves (-4.78 g/day) involving a reduction in emissions in comparison with Scenario 1 (-0.76 CH4 kg/slaughtered calf/year). However, it also led to a lower expected gain in profit per unit of product (-7.86 €/slaughtered calf/year). A carbon quota scenario would select slightly smaller cows (-0.48 kg) with similar responses in maternal abilities (age at first calving, calving interval, maternal weaning weight, and calving ease) and growth, and lower emissions (-0.22 CH4 kg/slaughtered calf/year) regarding the benchmark scenario. Profit per cow would increase by +1.52€/slaughtered calf/year although this scenario implies a reduction in the number of cows per herd. In a carbon tax scenario, higher reduction in emissions implied a reduction of profitability per animal.


Assuntos
Bovinos/fisiologia , Indústria de Laticínios/economia , Metano/biossíntese , Seleção Genética , Animais , Cruzamento , Bovinos/genética , Feminino , Masculino , Modelos Biológicos
12.
Genet Sel Evol ; 48: 8, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26830030

RESUMO

BACKGROUND: Dominance effects may contribute to genetic variation of complex traits in dairy cattle, especially for traits closely related to fitness such as fertility. However, traditional genetic evaluations generally ignore dominance effects and consider additive genetic effects only. Availability of dense single nucleotide polymorphisms (SNPs) panels provides the opportunity to investigate the role of dominance in quantitative variation of complex traits at both the SNP and animal levels. Including dominance effects in the genomic evaluation of animals could also help to increase the accuracy of prediction of future phenotypes. In this study, we estimated additive and dominance variance components for fertility and milk production traits of genotyped Holstein and Jersey cows in Australia. The predictive abilities of a model that accounts for additive effects only (additive), and a model that accounts for both additive and dominance effects (additive + dominance) were compared in a fivefold cross-validation. RESULTS: Estimates of the proportion of dominance variation relative to phenotypic variation that is captured by SNPs, for production traits, were up to 3.8 and 7.1 % in Holstein and Jersey cows, respectively, whereas, for fertility, they were equal to 1.2 % in Holstein and very close to zero in Jersey cows. We found that including dominance in the model was not consistently advantageous. Based on maximum likelihood ratio tests, the additive + dominance model fitted the data better than the additive model, for milk, fat and protein yields in both breeds. However, regarding the prediction of phenotypes assessed with fivefold cross-validation, including dominance effects in the model improved accuracy only for fat yield in Holstein cows. Regression coefficients of phenotypes on genetic values and mean squared errors of predictions showed that the predictive ability of the additive + dominance model was superior to that of the additive model for some of the traits. CONCLUSIONS: In both breeds, dominance effects were significant (P < 0.01) for all milk production traits but not for fertility. Accuracy of prediction of phenotypes was slightly increased by including dominance effects in the genomic evaluation model. Thus, it can help to better identify highly performing individuals and be useful for culling decisions.


Assuntos
Bovinos/genética , Indústria de Laticínios , Fertilidade/genética , Genes Dominantes , Lactação/genética , Animais , Austrália , Cruzamento , Feminino , Genômica , Genótipo , Funções Verossimilhança , Lipídeos/análise , Masculino , Leite/química , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Gravidez , Característica Quantitativa Herdável , Seleção Genética
13.
J Dairy Sci ; 99(8): 6371-6380, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27209136

RESUMO

Copy number variants (CNV) are structural variants consisting of duplications or deletions of genomic fragments longer than 1 kb that present variability in the population and are heritable. The objective of this study was to identify CNV regions (CNVR) associated with 7 economically important traits (production, functional, and type traits) in Holstein cattle: fat yield, protein yield, somatic cell count, days open, stature, foot angle, and udder depth. Copy number variants were detected by using deep-sequencing data from 10 sequenced bulls and the Bovine SNP chip array hybridization signals. To reduce the number of false-positive calls, only CNV identified by both sequencing and Bovine SNP chip assays were kept in the final data set. This resulted in 823 CNVR. After filtering by minor allele frequency >0.01, a total of 90 CNVR appeared segregating in the bulls that had phenotypic data. Linear and quadratic CNVR effects were estimated using Bayesian approaches. A total of 15 CNVR were associated with the traits included in the analysis. One CNVR was associated with fat and protein yield, another 1 with fat yield, 3 with stature, 1 with foot angle, 7 with udder depth, and only 1 with days open. Among the genes located within these regions, highlighted were the MTHFSD gene that belongs to the folate metabolism genes, which play critical roles in regulating milk protein synthesis; the SNRPE gene that is related to several morphological pathologies; and the NF1 gene, which is associated with potential effects on fertility traits. The results obtained in the current study revealed that these CNVR segregate in the Holstein population, and therefore some potential exists to increase the frequencies of the favorable alleles in the population after independent validation of results in this study. However, genetic variance explained by the variants reported in this study was small.


Assuntos
Teorema de Bayes , Polimorfismo de Nucleotídeo Único , Animais , Bovinos , Variações do Número de Cópias de DNA , Masculino , Leite/química , Fenótipo
14.
BMC Genet ; 16: 89, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26193888

RESUMO

BACKGROUND: It has been suggested that traits with low heritability, such as fertility, may have proportionately more genetic variation arising from non-additive effects than traits with higher heritability, such as milk yield. Here, we performed a large genome scan with 408,255 single nucleotide polymorphism (SNP) markers to identify chromosomal regions associated with additive, dominance and epistatic (pairwise additive × additive) variability in milk yield and a measure of fertility, calving interval, using records from a population of 7,055 Holstein cows. The results were subsequently validated in an independent set of 3,795 Jerseys. RESULTS: We identified genomic regions with validated additive effects on milk yield on Bos taurus autosomes (BTA) 5, 14 and 20, whereas SNPs with suggestive additive effects on fertility were observed on BTA 5, 9, 11, 18, 22, 27, 29 and the X chromosome. We also confirmed genome regions with suggestive dominance effects for milk yield (BTA 2, 3, 5, 26 and 27) and for fertility (BTA 1, 2, 3, 7, 23, 25 and 28). A number of significant epistatic effects for milk yield on BTA 14 were found across breeds. However on close inspection, these were likely to be associated with the mutation in the diacylglycerol O-acyltransferase 1 (DGAT1) gene, given that the associations were no longer significant when the additive effect of the DGAT1 mutation was included in the epistatic model. CONCLUSIONS: In general, we observed a low statistical power (high false discovery rates and small number of significant SNPs) for non-additive genetic effects compared with additive effects for both traits which could be an artefact of higher dependence on linkage disequilibrium between markers and causative mutations or smaller size of non-additive effects relative to additive effects. The results of our study suggest that individual non-additive effects make a small contribution to the genetic variation of milk yield and fertility. Although we found no individual mutation with large dominance effect for both traits under investigation, a contribution to genetic variance is still possible from a large number of small dominance effects, so methods that simultaneously incorporate genotypes across all loci are suggested to test the variance explained by dominance gene actions.


Assuntos
Fertilidade/genética , Estudos de Associação Genética , Marcadores Genéticos , Leite , Animais , Bovinos , Mapeamento Cromossômico , Epistasia Genética , Genes Dominantes , Estudo de Associação Genômica Ampla , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
15.
Trop Anim Health Prod ; 47(1): 67-71, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25319449

RESUMO

Different fertility indices were constructed for improving fertility performance in Iranian Holstein dairy cows. Number of inseminations per conception and days from calving to first insemination, each weighted by its economic value, were included as breeding goals in the aggregate genotype definition. Different fertility indices (FI) were constructed with different combinations of available fertility traits: number of inseminations to conception (INS), days from calving to first service (DFS), interval between first and last insemination (IFL), and days open (DO). The fertility index (FI1) that included INS and DFS had the greatest genetic gain for INS (-0.39 insemination), DFS (-7.47 days), and profit ($4.3) per generation. Genetic gain for profit, DFS, and INS including only DO showed slight differences regarding FI1. A selection index that included only INS (DFS) presented the larger (smaller) genetic gains for INS and smaller (larger) for DFS, which were -0.40 (-0.034) and -0.975 (-11.18) inseminations and days, respectively. The result of this study showed that recording INS and DFS are preferable traits for including in a fertility subindex. DO can be used in the absence of other fertility traits.


Assuntos
Criação de Animais Domésticos/métodos , Fertilidade/genética , Lactação/genética , Animais , Cruzamento , Bovinos , Simulação por Computador , Feminino , Fertilização , Genótipo , Inseminação , Irã (Geográfico) , Modelos Genéticos , Fenótipo , Gravidez , Prenhez
16.
Hum Genet ; 133(10): 1235-53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24934831

RESUMO

The continuous advancement in genotyping technology has not been accompanied by the application of innovative statistical methods, such as multi-marker methods (MMM), to unravel genetic associations with complex traits. Although the performance of MMM has been widely explored in a prediction context, little is known on their behavior in the quantitative trait loci (QTL) detection under complex genetic architectures. We shed light on this still open question by applying Bayes A (BA) and Bayesian LASSO (BL) to simulated and real data. Both methods were compared to the single marker regression (SMR). Simulated data were generated in the context of six scenarios differing on effect size, minor allele frequency (MAF) and linkage disequilibrium (LD) between QTLs. These were based on real SNP genotypes in chromosome 21 from the Spanish Bladder Cancer Study. We show how the genetic architecture dramatically affects the behavior of the methods in terms of power, type I error and accuracy of estimates. Markers with high MAF are easier to detect by all methods, especially if they have a large effect on the phenotypic trait. A high LD between QTLs with either large or small effects differently affects the power of the methods: it impairs QTL detection with BA, irrespectively of the effect size, although boosts that of small effects with BL and SMR. We demonstrate the convenience of applying MMM rather than SMR because of their larger power and smaller type I error. Results from real data when applying MMM suggest novel associations not detected by SMR.


Assuntos
Simulação por Computador , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Técnicas de Genotipagem/métodos , Alelos , Teorema de Bayes , Estudos de Casos e Controles , Frequência do Gene , Genes Neoplásicos , Técnicas de Genotipagem/estatística & dados numéricos , Hispânico ou Latino/genética , Hispânico ou Latino/estatística & dados numéricos , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Neoplasias da Bexiga Urinária/epidemiologia , Neoplasias da Bexiga Urinária/genética
17.
Genet Sel Evol ; 46: 10, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24495554

RESUMO

BACKGROUND: Imputation of genotypes from low-density to higher density chips is a cost-effective method to obtain high-density genotypes for many animals, based on genotypes of only a relatively small subset of animals (reference population) on the high-density chip. Several factors influence the accuracy of imputation and our objective was to investigate the effects of the size of the reference population used for imputation and of the imputation method used and its parameters. Imputation of genotypes was carried out from 50,000 (moderate-density) to 777,000 (high-density) SNPs (single nucleotide polymorphisms). METHODS: The effect of reference population size was studied in two datasets: one with 548 and one with 1289 Holstein animals, genotyped with the Illumina BovineHD chip (777 k SNPs). A third dataset included the 548 animals genotyped with the 777 k SNP chip and 2200 animals genotyped with the Illumina BovineSNP50 chip. In each dataset, 60 animals were chosen as validation animals, for which all high-density genotypes were masked, except for the Illumina BovineSNP50 markers. Imputation was studied in a subset of six chromosomes, using the imputation software programs Beagle and DAGPHASE. RESULTS: Imputation with DAGPHASE and Beagle resulted in 1.91% and 0.87% allelic imputation error rates in the dataset with 548 high-density genotypes, when scale and shift parameters were 2.0 and 0.1, and 1.0 and 0.0, respectively. When Beagle was used alone, the imputation error rate was 0.67%. If the information obtained by Beagle was subsequently used in DAGPHASE, imputation error rates were slightly higher (0.71%). When 2200 moderate-density genotypes were added and Beagle was used alone, imputation error rates were slightly lower (0.64%). The least imputation errors were obtained with Beagle in the reference set with 1289 high-density genotypes (0.41%). CONCLUSIONS: For imputation of genotypes from the 50 k to the 777 k SNP chip, Beagle gave the lowest allelic imputation error rates. Imputation error rates decreased with increasing size of the reference population. For applications for which computing time is limiting, DAGPHASE using information from Beagle can be considered as an alternative, since it reduces computation time and increases imputation error rates only slightly.


Assuntos
Bovinos/genética , Técnicas de Genotipagem/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Polimorfismo de Nucleotídeo Único , Alelos , Animais , Feminino , Frequência do Gene , Genótipo , Masculino
18.
J Anim Sci Biotechnol ; 14(1): 98, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37434255

RESUMO

BACKGROUND: Genotype-by-sequencing has been proposed as an alternative to SNP genotyping arrays in genomic selection to obtain a high density of markers along the genome. It requires a low sequencing depth to be cost effective, which may increase the error at the genotype assigment. Third generation nanopore sequencing technology offers low cost sequencing and the possibility to detect genome methylation, which provides added value to genotype-by-sequencing. The aim of this study was to evaluate the performance of genotype-by-low pass nanopore sequencing for estimating the direct genomic value in dairy cattle, and the possibility to obtain methylation marks simultaneously. RESULTS: Latest nanopore chemistry (LSK14 and Q20) achieved a modal base calling accuracy of 99.55%, whereas previous kit (LSK109) achieved slightly lower accuracy (99.1%). The direct genomic value accuracy from genotype-by-low pass sequencing ranged between 0.79 and 0.99, depending on the trait (milk, fat or protein yield), with a sequencing depth as low as 2 × and using the latest chemistry (LSK114). Lower sequencing depth led to biased estimates, yet with high rank correlations. The LSK109 and Q20 achieved lower accuracies (0.57-0.93). More than one million high reliable methylated sites were obtained, even at low sequencing depth, located mainly in distal intergenic (87%) and promoter (5%) regions. CONCLUSIONS: This study showed that the latest nanopore technology in useful in a LowPass sequencing framework to estimate direct genomic values with high reliability. It may provide advantages in populations with no available SNP chip, or when a large density of markers with a wide range of allele frequencies is needed. In addition, low pass sequencing provided nucleotide methylation status of > 1 million nucleotides at ≥ 10 × , which is an added value for epigenetic studies.

19.
Microorganisms ; 11(7)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37512987

RESUMO

The mechanisms underlying host resistance to Mycobacterium avium subsp. paratuberculosis (MAP) infection are largely unknown. In the current study, we hypothesize that cows with an ability to produce higher levels of interferon-gamma (IFNÉ£) might control MAP infection more successfully. To test this hypothesis, IFNÉ£ production was measured using a specific IFNÉ£ ELISA kit in avian purified protein derivative (aPPD)-stimulated blood samples collected from 152 Holstein cattle. DNA isolated from peripheral blood samples of the animals included in the study was genotyped with the EuroG Medium-Density Bead Chip, and the genotypes were imputed to whole-genome sequencing. A genome-wide association analysis (GWAS) revealed that high levels of IFNÉ£ in response to the aPPD were associated with a specific genetic profile (heritability = 0.64) and allowed the identification of 71 SNPs, 40 quantitative trait loci (QTL), and 104 candidate genes. A functional analysis using the 104 candidate genes revealed a significant enrichment of genes involved in the innate immune response and, more specifically, in necroptosis. Taken together, our results define a heritable and distinct immunogenetic profile associated with the production of high IFNÉ£ levels and with the capacity of the host to lyse MAP-infected macrophages by necroptosis.

20.
Animals (Basel) ; 13(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37760261

RESUMO

This study aimed to expand the knowledge about the activity and mode of action of CHI on methanogenesis and rumen microbial populations in vivo. A total of 16 lactating dairy cows were distributed in two groups, one of them receiving 135 mg CHI/kg body weight daily. The effect on productive performance, milk composition, fermentation efficiency, methane emissions, microbial protein synthesis, and ruminal microbial communities was determined. Supplementation with CHI did not affect rumen microbial diversity but increased the relative abundance (RA) of the bacteria Anaeroplasma and decreased those of rumen ciliates and protozoa resulting in a shift towards a lower acetic to propionic ratio. However, no effect on milk yield or methane intensity was observed. In conclusion, supplementing 135 mg CHI/kg body weight increased the RA of Anaeroplasma and decreased those of rumen ciliates and protozoa, both being related to fiber degradation in the rumen in different ways and resulted in a shift of ruminal fermentation towards more propionate proportions, without affecting CH4 emissions, milk yield, or milk composition. Further research with higher doses would be necessary to assess the potential use of this additive as a methane inhibitor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA