Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255772

RESUMO

Parkinson's disease (PD) is a complex disorder characterized by the impairment of the dopaminergic nigrostriatal system. PD has duplicated its global burden in the last few years, becoming the leading neurological disability worldwide. Therefore, there is an urgent need to develop innovative approaches that target multifactorial underlying causes to potentially prevent or limit disease progression. Accumulating evidence suggests that neuroinflammatory responses may play a pivotal role in the neurodegenerative processes that occur during the development of PD. Cortistatin is a neuropeptide that has shown potent anti-inflammatory and immunoregulatory effects in preclinical models of autoimmune and neuroinflammatory disorders. The goal of this study was to explore the therapeutic potential of cortistatin in a well-established preclinical mouse model of PD induced by acute exposure to the neurotoxin 1-methil-4-phenyl1-1,2,3,6-tetrahydropyridine (MPTP). We observed that treatment with cortistatin mitigated the MPTP-induced loss of dopaminergic neurons in the substantia nigra and their connections to the striatum. Consequently, cortistatin administration improved the locomotor activity of animals intoxicated with MPTP. In addition, cortistatin diminished the presence and activation of glial cells in the affected brain regions of MPTP-treated mice, reduced the production of immune mediators, and promoted the expression of neurotrophic factors in the striatum. In an in vitro model of PD, treatment with cortistatin also demonstrated a reduction in the cell death of dopaminergic neurons that were exposed to the neurotoxin. Taken together, these findings suggest that cortistatin could emerge as a promising new therapeutic agent that combines anti-inflammatory and neuroprotective properties to regulate the progression of PD at multiple levels.


Assuntos
Neuropeptídeos , Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/tratamento farmacológico , Neurotoxinas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
2.
J Neuroinflammation ; 20(1): 226, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794493

RESUMO

BACKGROUND: Brain activity governing cognition and behaviour depends on the fine-tuned microenvironment provided by a tightly controlled blood-brain barrier (BBB). Brain endothelium dysfunction is a hallmark of BBB breakdown in most neurodegenerative/neuroinflammatory disorders. Therefore, the identification of new endogenous molecules involved in endothelial cell disruption is essential to better understand BBB dynamics. Cortistatin is a neuroimmune mediator with anti-inflammatory and neuroprotective properties that exerts beneficial effects on the peripheral endothelium. However, its role in the healthy and injured brain endothelium remains to be evaluated. Herein, this study aimed to investigate the potential function of endogenous and therapeutic cortistatin in regulating brain endothelium dysfunction in a neuroinflammatory/neurodegenerative environment. METHODS: Wild-type and cortistatin-deficient murine brain endothelium and human cells were used for an in vitro barrier model, where a simulated ischemia-like environment was mimicked. Endothelial permeability, junction integrity, and immune response in the presence and absence of cortistatin were evaluated using different size tracers, immunofluorescence labelling, qPCR, and ELISA. Cortistatin molecular mechanisms underlying brain endothelium dynamics were assessed by RNA-sequencing analysis. Cortistatin role in BBB leakage was evaluated in adult mice injected with LPS. RESULTS: The endogenous lack of cortistatin predisposes endothelium weakening with increased permeability, tight-junctions breakdown, and dysregulated immune activity. We demonstrated that both damaged and uninjured brain endothelial cells isolated from cortistatin-deficient mice, present a dysregulated and/or deactivated genetic programming. These pathways, related to basic physiology but also crucial for the repair after damage (e.g., extracellular matrix remodelling, angiogenesis, response to oxygen, signalling, and metabolites transport), are dysfunctional and make brain endothelial barrier lacking cortistatin non-responsive to any further injury. Treatment with cortistatin reversed in vitro hyperpermeability, tight-junctions disruption, inflammatory response, and reduced in vivo BBB leakage. CONCLUSIONS: The neuropeptide cortistatin has a key role in the physiology of the cerebral microvasculature and its presence is crucial to develop a canonical balanced response to damage. The reparative effects of cortistatin in the brain endothelium were accompanied by the modulation of the immune function and the rescue of barrier integrity. Cortistatin-based therapies could emerge as a novel pleiotropic strategy to ameliorate neuroinflammatory/neurodegenerative disorders with disrupted BBB.


Assuntos
Encefalopatias , Neuropeptídeos , Camundongos , Animais , Humanos , Células Endoteliais/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Endotélio , Neuropeptídeos/metabolismo
3.
Clin Oral Implants Res ; 34(12): 1342-1353, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37642257

RESUMO

BACKGROUND: Inflammasome components NLRP3 and AIM2 contribute to inflammation development by the activation of caspase-1 and IL-1ß. They have not been yet evaluated in samples from patients with active peri-implantitis. Thus, the aim of the present study is to analyze the expression of inflammasomes NLRP3 and AIM2 and subsequent caspase 1 and IL-1ß assessing the microenvironment of leukocyte subsets in samples from patients with active peri-implantitis. METHODS: Biopsies were collected from 33 implants in 21 patients being treated for peri-implantitis. Biopsies from gingival tissues from 15 patients with healthy periodontium were also collected for control. These tissues were evaluated through conventional histological stainings. Then, immunohistochemical detection was performed to analyze NLRP3, AIM2, caspase-1, and IL-1ß and markers of different leukocyte subsets. PCR for inflammasomes and related genes was also done. RESULTS: This manuscript reveals a high immunohistochemical and mRNA expression of NLRP3 and AIM2 inflammasomes, caspase-1, and IL-1ß in biopsies collected from human peri-implantitis. The expression of the tested markers was significantly correlated with the increase in inflammatory infiltrate, probing depth, presence of biofilm, and bleeding on probing. In these peri-implantitis lesions, the area of biopsy tissue occupied by inflammatory infiltrate was intense while the area occupied by collagen was significantly lower. In comparison with periodontal healthy tissues, the inflammatory infiltrate was statistically significantly higher in the peri-implantitis biopsies and was mainly composed of plasma cells, followed by T and B lymphocytes. CONCLUSION: In human peri-implantitis, chronic inflammation can be explained in part by the action of IL-1ß/caspase 1 induced through NLRP3 and AIM2 inflammasome activation.


Assuntos
Inflamassomos , Peri-Implantite , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estudos Transversais , Caspase 1/metabolismo , Inflamação , Interleucina-1beta/análise , Proteínas de Ligação a DNA/metabolismo
4.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762420

RESUMO

Neurodegenerative disorders encompass a broad spectrum of profoundly disabling situations that impact millions of individuals globally. While their underlying causes and pathophysiology display considerable diversity and remain incompletely understood, a mounting body of evidence indicates that the disruption of blood-brain barrier (BBB) permeability, resulting in brain damage and neuroinflammation, is a common feature among them. Consequently, targeting the BBB has emerged as an innovative therapeutic strategy for addressing neurological disorders. Within this review, we not only explore the neuroprotective, neurotrophic, and immunomodulatory benefits of mesenchymal stem cells (MSCs) in combating neurodegeneration but also delve into their recent role in modulating the BBB. We will investigate the cellular and molecular mechanisms through which MSC treatment impacts primary age-related neurological conditions like Alzheimer's disease, Parkinson's disease, and stroke, as well as immune-mediated diseases such as multiple sclerosis. Our focus will center on how MSCs participate in the modulation of cell transporters, matrix remodeling, stabilization of cell-junction components, and restoration of BBB network integrity in these pathological contexts.


Assuntos
Doença de Alzheimer , Células-Tronco Mesenquimais , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Barreira Hematoencefálica/patologia , Doenças Neurodegenerativas/patologia , Doença de Parkinson/patologia , Doença de Alzheimer/patologia , Células-Tronco Mesenquimais/fisiologia
5.
J Immunol ; 200(11): 3697-3710, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669783

RESUMO

Vasoactive intestinal peptide (VIP) is a neuropeptide that exerts various vascular and cardioprotective functions and regulates immune function and inflammatory response at multiple levels. However, its role in inflammatory cardiovascular disorders is largely unknown. Myocarditis and atherosclerosis are two inflammatory and autoimmune cardiovascular diseases that cause important adverse circulatory events. In this study, we investigate the therapeutic effects of VIP in various well-established preclinical models of experimental autoimmune myocarditis and atherosclerosis. Intraperitoneal injection of VIP during the effector phase of experimental autoimmune myocarditis in susceptible BALB/c mice significantly reduced its prevalence, ameliorated signs of heart hypertrophy and injury, attenuated myocardial inflammatory infiltration, and avoided subsequent profibrotic cardiac remodeling. This effect was accompanied by a reduction of Th17-driven cardiomyogenic responses in peripheral lymphoid organs and in the levels of myocardial autoantibodies. In contrast, acute and chronic atherosclerosis was induced in apolipoprotein E-deficient mice fed a hyperlipidemic diet and subjected to partial carotid ligation. Systemic VIP treatment reduced the number and size of atherosclerotic plaques in carotid, aorta, and sinus in hypercholesterolemic mice. VIP reduced Th1-driven inflammatory responses and increased regulatory T cells in atherosclerotic arteries and their draining lymph nodes. VIP also regulated cholesterol efflux in macrophages and reduced the formation of foam cells and their presence in atherosclerotic plaques. Finally, VIP inhibited proliferation and migration of smooth muscle cells and neointima formation in a mouse model of complete carotid ligation. These findings encourage further studies aimed to assess whether VIP can be used as a pharmaceutical agent to treat heart inflammation and atherosclerosis.


Assuntos
Aterosclerose/imunologia , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Inflamação/imunologia , Miocardite/imunologia , Peptídeo Intestinal Vasoativo/imunologia , Animais , Apolipoproteínas E/imunologia , Autoanticorpos/imunologia , Modelos Animais de Doenças , Feminino , Linfonodos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Músculo Liso/imunologia , Miocárdio/imunologia , Neuropeptídeos/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
6.
Nat Rev Immunol ; 7(1): 52-63, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17186031

RESUMO

The induction of antigen-specific tolerance is essential to maintain immune homeostasis, control autoreactive T cells, prevent the onset of autoimmune diseases and achieve tolerance of transplants. Inflammation is a necessary process for eliminating pathogens, but can lead to serious deleterious effects in the host if left unchecked. Identifying the endogenous factors that control immune tolerance and inflammation is a key goal in the field of immunology. In the last decade, various neuropeptides that are produced by immune cells with potent anti-inflammatory actions were found to participate in the maintenance of tolerance in different immunological disorders.


Assuntos
Autoimunidade , Tolerância Imunológica , Inflamação/imunologia , Modelos Imunológicos , Neuropeptídeos/imunologia , Transdução de Sinais/imunologia , Animais , Humanos
7.
J Biol Chem ; 289(21): 14583-99, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24706753

RESUMO

Vasoactive intestinal peptide (VIP) is an anti-inflammatory neuropeptide recently identified as a potential antimicrobial peptide. To overcome the metabolic limitations of VIP, we modified the native peptide sequence and generated two stable synthetic analogues (VIP51 and VIP51(6-30)) with better antimicrobial profiles. Herein we investigate the effects of both VIP analogues on cell viability, membrane integrity, and ultrastructure of various bacterial strains and Leishmania species. We found that the two VIP derivatives kill various non-pathogenic and pathogenic Gram-positive and Gram-negative bacteria as well as the parasite Leishmania major through a mechanism that depends on the interaction with certain components of the microbial surface, the formation of pores, and the disruption of the surface membrane. The cytotoxicity of the VIP derivatives is specific for pathogens, because they do not affect the viability of mammalian cells. Docking simulations indicate that the chemical changes made in the analogues are critical to increase their antimicrobial activities. Consequently, we found that the native VIP is less potent as an antibacterial and fails as a leishmanicidal. Noteworthy from a therapeutic point of view is that treatment with both derivatives increases the survival and reduces bacterial load and inflammation in mice with polymicrobial sepsis. Moreover, treatment with VIP51(6-30) is very effective at reducing lesion size and parasite burden in a model of cutaneous leishmaniasis. These results indicate that the VIP analogues emerge as attractive alternatives for treating drug-resistant infectious diseases and provide key insights into a rational design of novel agents against these pathogens.


Assuntos
Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Leishmania major/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia , Sequência de Aminoácidos , Animais , Endotoxemia/tratamento farmacológico , Endotoxemia/microbiologia , Feminino , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Ligação de Hidrogênio , Leishmania major/genética , Leishmania major/ultraestrutura , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Sepse/tratamento farmacológico , Sepse/microbiologia , Análise de Sobrevida , Resultado do Tratamento , Peptídeo Intestinal Vasoativo/análogos & derivados , Peptídeo Intestinal Vasoativo/química
8.
J Immunol ; 191(12): 6040-51, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24249730

RESUMO

We currently face an alarming resurgence in infectious diseases characterized by antimicrobial resistance and therapeutic failure. This has generated the urgent need of developing new therapeutic approaches that include agents with nontraditional modes of action. A recent interest focused on approaches based on our natural immune defenses, especially on peptides that combine innate antimicrobial activity against diverse pathogens and immunoregulatory functions. In this study, to our knowledge, we describe for the first time the antimicrobial activity of the neuropeptide urocortin II (UCNII) against a panel of Gram-positive and Gram-negative bacteria and tropical parasites of the genus Leishmania. Importantly, this cytotoxicity was selective for pathogens, because UCNII did not affect mammalian cell viability. Structurally, UCNII has a cationic and amphipathic design that resembles antimicrobial peptides. Using mutants and UCNII fragments, we determined the structural requirements for the interaction between the peptide and the surface of pathogen. Following its binding to pathogen, UCNII caused cell death through different membrane-disrupting mechanisms that involve aggregation and membrane depolarization in bacteria and pore formation in Leishmania. Noteworthily, UCNII killed the infective form of Leishmania major even inside the infected macrophages. Consequently, UCNII prevented mortality caused by polymicrobial sepsis and ameliorated pathological signs of cutaneous leishmaniasis. Besides its presence in body physical and mucosal barriers, we found that innate immune cells produce UCNII in response to infections. Therefore, UCNII could be considered as an ancient highly-conserved host peptide involved in the natural antimicrobial defense and emerge as an attractive alternative to current treatments for microbial disorders with associated drug resistances.


Assuntos
Hormônio Liberador da Corticotropina/fisiologia , Leishmania/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Sepse/tratamento farmacológico , Urocortinas/fisiologia , Sequência de Aminoácidos , Animais , Membrana Celular/efeitos dos fármacos , Hormônio Liberador da Corticotropina/química , Hormônio Liberador da Corticotropina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/efeitos dos fármacos , Feminino , Humanos , Ligação de Hidrogênio , Imunidade Inata , Perfuração Intestinal/complicações , Perfuração Intestinal/microbiologia , Leishmania/ultraestrutura , Leishmaniose Cutânea/parasitologia , Lipopolissacarídeos/química , Macrófagos/parasitologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Micrococcus luteus/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Peritonite/etiologia , Peritonite/microbiologia , Ligação Proteica , Conformação Proteica , Pseudomonas pseudoalcaligenes/efeitos dos fármacos , Sepse/etiologia , Streptococcus mutans/efeitos dos fármacos , Urocortinas/química , Urocortinas/farmacologia
9.
J Immunol ; 191(5): 2144-54, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23918980

RESUMO

Cortistatin is a cyclic-neuropeptide produced by brain cortex and immune cells that shows potent anti-inflammatory activity. In this article, we investigated the effect of cortistatin in two models of experimental autoimmune encephalomyelitis (EAE) that mirror chronic and relapsing-remitting multiple sclerosis. A short-term systemic treatment with cortistatin reduced clinical severity and incidence of EAE, the appearance of inflammatory infiltrates in spinal cord, and the subsequent demyelination and axonal damage. This effect was associated with a reduction of the two deleterious components of the disease, namely, the autoimmune and inflammatory response. Cortistatin decreased the presence/activation of encephalitogenic Th1 and Th17 cells in periphery and nervous system, and downregulated various inflammatory mediators, whereas it increased the number of regulatory T cells with suppressive effects on the encephalitogenic response. Moreover, cortistatin regulated glial activity and favored an active program of neuroprotection/regeneration. We further used cortistatin-deficient mice to investigate the role of endogenous cortistatin in the control of immune responses. Surprisingly, cortistatin-deficient mice were partially resistant to EAE and other inflammatory disorders, despite showing competent inflammatory/autoreactive responses. This unexpected phenotype was associated with elevated circulating glucocorticoids and an anxiety-like behavior. Our findings provide a powerful rationale for the assessment of the efficacy of cortistatin as a novel multimodal therapeutic approach to treat multiple sclerosis and identify cortistatin as a key endogenous component of neuroimmune system.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Neuropeptídeos/metabolismo , Linfócitos T/efeitos dos fármacos , Animais , Encefalomielite Autoimune Experimental/patologia , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/imunologia , Medula Espinal/patologia , Linfócitos T/imunologia
10.
Glia ; 62(12): 1932-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24995657

RESUMO

Activated microglia play a central role in the course of neurodegenerative diseases as they secrete cytotoxic substances which lead to neuronal cell death. Understanding the mechanisms that drive activation of microglia is essential to reverse this phenotype and to protect from neurodegeneration. With some exceptions, evidence indicates that changes in cell morphology from a star shape to a round and flat shape accompany the process of activation in microglia. In this study, we investigated the effect of adipose-tissue-derived mesenchymal stem cells (ASCs), which exert important anti-inflammatory actions, in microglia morphology. Microglia exposed to ASCs or their secreted factors (conditioned medium) underwent a cell shape change into a ramifying morphology in basal and inflammatory conditions, similar to that observed in microglia found in healthy brain. Colony-stimulating factor-1 secreted by ASCs played a critical role in the induction of this phenotype. Importantly, ASCs reversed the activated round phenotype induced in microglia by bacterial endotoxins. The ramifying morphology of microglia induced by ASCs was associated with a decrease of the proinflammatory cytokines tumor necrosis factor-α and interleukin-6, an increase in phagocytic activity, and the upregulation of neurotrophic factors and of Arginase-1, a marker for M2-like regulatory microglia. In addition, activation of the phosphoinositide-3-kinase/Akt pathway and the RhoGTPases Rac1 and Cdc42 played a major role in the acquisition of this phenotype. Therefore, these RhoGTPases emerge as key players in the ramification of microglia by anti-inflammatory agents like ASCs, being fundamental to maintain the tissue-surveying, central nervous system supporting state of microglia in healthy conditions.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Microglia/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Encéfalo/citologia , Diferenciação Celular , Tamanho Celular , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Flavonoides/farmacologia , Lipopolissacarídeos/farmacologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Células-Tronco Mesenquimais/química , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos , Fagocitose/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
12.
Brain Behav Immun ; 37: 152-63, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24321213

RESUMO

Adrenomedullin is a neuropeptide known for its cardiovascular activities and anti-inflammatory effects. Here, we investigated the effect of adrenomedullin in a model of experimental autoimmune encephalomyelitis (EAE) that mirrors chronic progressive multiple sclerosis. A short-term systemic treatment with adrenomedullin reduced clinical severity and incidence of EAE, the appearance of inflammatory infiltrates in spinal cord and the subsequent demyelination and axonal damage. This effect was exerted at multiple levels affecting both early and late events of the disease. Adrenomedullin decreased the presence/activation of encephalitogenic Th1 and Th17 cells and down-regulated several inflammatory mediators in peripheral lymphoid organs and central nervous system. Noteworthy, adrenomedullin inhibited the production by encephalitogenic cells of osteopontin and of Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF), two critical cytokines in the development of EAE. At the same time, adrenomedullin increased the number of IL-10-producing regulatory T cells with suppressive effects on the progression of EAE. Furthermore, adrenomedullin generated dendritic cells with a semi-mature phenotype that impaired encephalitogenic responses in vitro and in vivo. Finally, adrenomedullin regulated glial activity and favored an active program of neuroprotection/regeneration. Therefore, the use of adrenomedullin emerges as a novel multimodal therapeutic approach to treat chronic progressive multiple sclerosis.


Assuntos
Adrenomedulina/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Doença Crônica , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Feminino , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Baço/efeitos dos fármacos , Baço/imunologia
13.
Arthritis Rheum ; 65(5): 1390-401, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23371349

RESUMO

OBJECTIVE: To investigate the role of the antiinflammatory neuropeptide cortistatin in chronic pain evoked by joint inflammation. METHODS: Thermal and mechanical hyperalgesia was evoked in mouse knee joints by intraplantar injection of tumor necrosis factor α and intraarticular infusion of Freund's complete adjuvant, and the analgesic effects of cortistatin, administered centrally, peripherally, and systemically, were assessed. In addition, the effects of cortistatin on the production of nociceptive peptides and the activation of pain signaling were assayed in dorsal root ganglion cultures and in inflammatory pain models. The role of endogenous cortistatin in pain sensitization and perpetuation of chronic inflammatory states was evaluated in cortistatin-deficient mice. Finally, the effect of noxious/inflammatory stimuli in the production of cortistatin by the peripheral nociceptive system was assayed in vitro and in vivo. RESULTS: Expression of cortistatin was observed in peptidergic nociceptors of the peripheral nociceptive system, and endogenous cortistatin was found to participate in the tuning of pain sensitization, especially in pathologic inflammatory conditions. Results showed that cortistatin acted both peripherally and centrally to reduce the tactile allodynia and heat hyperalgesia evoked by arthritis and peripheral tissue inflammation in mice, via mechanisms that were independent of its antiinflammatory action. These mechanisms involved direct action on nociceptive neurons and regulation of central sensitization. The analgesic effects of cortistatin in murine arthritic pain were linked to binding of the neuropeptide to somatostatin and ghrelin receptors, activation of the G protein subunit Gαi , impairment of ERK signaling, and decreased production of calcitonin gene-related peptide in primary nociceptors. CONCLUSION: These findings indicate that cortistatin is an antiinflammatory factor with potent analgesic effects that may offer a new approach to pain therapy in pathologic inflammatory states, including osteoarthritis and rheumatoid arthritis.


Assuntos
Analgesia , Artrite/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Neuropeptídeos/farmacologia , Dor/tratamento farmacológico , Animais , Artrite/induzido quimicamente , Artrite/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Sensibilização do Sistema Nervoso Central , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Adjuvante de Freund/administração & dosagem , Adjuvante de Freund/toxicidade , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Grelina/metabolismo , Grelina/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Injeções Intra-Articulares , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/deficiência , Neuropeptídeos/metabolismo , Dor/induzido quimicamente , Dor/metabolismo , Limiar da Dor , Ligação Proteica , Receptores de Grelina/metabolismo , Receptores de Somatostatina/metabolismo , Somatostatina/metabolismo , Somatostatina/farmacologia , Joelho de Quadrúpedes/efeitos dos fármacos , Joelho de Quadrúpedes/metabolismo , Joelho de Quadrúpedes/fisiopatologia , Fator de Necrose Tumoral alfa/toxicidade
14.
Gut ; 62(8): 1131-41, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22637701

RESUMO

OBJECTIVE: To investigate the effect of adipose-derived mesenchymal stromal cells (ASCs) on the activation state of macrophages (MΦ) in vitro, and the potential therapeutic effect of these cells in experimental colitis and sepsis. DESIGN: Murine bone marrow-derived macrophages were cultured with ASCs or with ASC conditioned media (ASC-MΦ) and characterised for the expression of several regulatory macrophage markers, including enzymes and cytokines, and for their immunomodulatory capacity in vitro. The therapeutic effect was investigated of ASC-MΦ in two models of experimental inflammatory colitis induced by trinitrobenzene sulphonic acid and dextran sodium sulphate, and in polymicrobial sepsis induced by caecal ligation and puncture. RESULTS: ASC-MΦ showed a phenotype that clearly differed from the classically activated macrophages or the alternatively activated macrophages induced by interleukin (IL)-4, characterised by high arginase activity, increased production of IL-10 upon restimulation and potent immunosuppressive activity on T cells and macrophages. Activation of cyclo-oxygenase-2 on ASCs seems to be critically involved in inducing this phenotype. Systemic infusion of ASC-MΦ inhibited colitis in mice, reducing mortality and weight loss while lowering the colonic and systemic levels of inflammatory cytokines. Importantly, therapeutic injection of ASC-MΦ in established chronic colitis alleviated its progression and avoided disease recurrence. Moreover, ASC-MΦ protected from severe sepsis by reducing the infiltration of inflammatory cells into various organs and by downregulating the production of several inflammatory mediators, where ASC-MΦ-derived IL-10 played a critical role. CONCLUSION: ASCs induce a distinct regulatory activation state of macrophages which possess potent immunomodulatory ability and therapeutic potential in inflammatory bowel diseases and sepsis.


Assuntos
Tecido Adiposo/citologia , Colite/prevenção & controle , Macrófagos/transplante , Células-Tronco Mesenquimais/imunologia , Sepse/prevenção & controle , Doença Aguda , Animais , Células da Medula Óssea/imunologia , Células Cultivadas , Técnicas de Cocultura , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Meios de Cultivo Condicionados , Citocinas/biossíntese , Modelos Animais de Doenças , Humanos , Terapia de Imunossupressão/métodos , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Sepse/imunologia , Síndrome de Resposta Inflamatória Sistêmica/prevenção & controle , Resultado do Tratamento
15.
Neuropharmacology ; 249: 109871, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412889

RESUMO

Dopamine is unable to access the central nervous system through the bloodstream. Only its precursor can do so, and with an effectiveness below 100% of the dose administered, as it is metabolized before crossing the blood-brain barrier. In this study, we describe a new solid lipid nanocarrier system designed and developed for dopamine. The nanoparticles were prepared by the melt-emulsification method and then coated with chitosan. The nanocarriers developed had a droplet size of about 250 nm, a polydispersity index of 0.2, a positive surface charge (+30 mV), and a percentage encapsulation efficiency of 36.3 ± 5.4. Transmission and scanning electron microscopy verified uniformity of particle size with spherical morphology. Various types of tests were performed to confirm that the nanoparticles designed are suitable for carrying dopamine through the blood-brain barrier. In vitro tests demonstrated the ability of these nanocarriers to pass through endothelial cell monolayers without affecting their integrity. This study shows that the formulation of dopamine in chitosan-coated solid lipid nanoparticles is a potentially viable formulation strategy to achieve the bioavailability of the drug for the treatment of Parkinson's disease in the central nervous system.


Assuntos
Quitosana , Lipossomos , Nanopartículas , Portadores de Fármacos/metabolismo , Dopamina/metabolismo , Quitosana/metabolismo , Barreira Hematoencefálica/metabolismo
16.
Brain Behav Immun ; 30: 54-60, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23376169

RESUMO

Ghrelin is an important gastrointestinal hormone that regulates feeding and metabolism. Moreover, ghrelin is produced by immune cells and shows potent anti-inflammatory activities. Here, we investigated its effect in two models of experimental autoimmune encephalomyelitis (EAE) that mirror chronic and relapsing-remitting multiple sclerosis. A short systemic treatment with ghrelin after the disease onset reduced clinical severity and incidence of both forms of EAE, which was associated with a decrease in inflammatory infiltrates in spinal cord and in the subsequent demyelination. This therapeutic effect was exerted through the reduction of the autoimmune and inflammatory components of the disease. Ghrelin decreased the presence/activation of encephalitogenic Th1 and Th17 cells in periphery and nervous system, down-regulated various inflammatory mediators, and induced regulatory T cells. In summary, our findings provide a powerful rationale for the assessment of the efficacy of ghrelin as a novel therapeutic approach for treating multiple sclerosis through distinct immunomodulatory mechanisms and further support the concept that the neuroendocrine and immune systems crosstalk to finely tune the final immune response of our body.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Grelina/uso terapêutico , Linfócitos T Reguladores/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Animais , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Grelina/farmacologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/metabolismo , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
17.
J Exp Med ; 203(3): 563-71, 2006 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-16492802

RESUMO

Cortistatin is a recently discovered cyclic neuropeptide related to somatostatin that has emerged as a potential endogenous antiinflammatory factor based on its production by and binding to immune cells. Because human septic shock involves excessive inflammatory cytokine production, we investigated the effect of cortistatin on the production of inflammatory mediators and its therapeutic action in various murine models of endotoxemia. Cortistatin down-regulated the production of inflammatory mediators by endotoxin-activated macrophages. The administration of cortistatin protected against lethality after cecal ligation and puncture, or injection of bacterial endotoxin or Escherichia coli, and prevented the septic shock-associated histopathology, such as infiltration of inflammatory cells and intravascular disseminated coagulation in various target organs. The therapeutic effect of cortistatin was mediated by decreasing the local and systemic levels of a wide spectrum of inflammatory mediators, including cytokines, chemokines, and acute phase proteins. The combined use of cortistatin and other antiinflammatory peptides was very efficient treating murine septic shock. This work provides the first evidence of cortistatin as a new immunomodulatory factor with the capacity to deactivate the inflammatory response. Cortistatin represents a potential multistep therapeutic agent for human septic shock, to be used in combination with other immunomodulatory agents or as a complement to other therapies.


Assuntos
Endotoxemia/tratamento farmacológico , Endotoxinas/toxicidade , Neuropeptídeos/administração & dosagem , Peptídeos Cíclicos/administração & dosagem , Animais , Citocinas/imunologia , Coagulação Intravascular Disseminada/tratamento farmacológico , Coagulação Intravascular Disseminada/imunologia , Coagulação Intravascular Disseminada/patologia , Endotoxemia/induzido quimicamente , Endotoxemia/imunologia , Endotoxinas/administração & dosagem , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/imunologia , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos BALB C
18.
Stem Cells Transl Med ; 11(1): 88-96, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35641173

RESUMO

Mesenchymal stromal stem/cells (MSC) therapies are clinically used in a wide range of disorders based on their robust HLA-independent immunosuppressive and anti-inflammatory properties. However, the mechanisms underlying MSC therapeutic activity remain elusive as demonstrated by the unpredictable therapeutic efficacy of MSC infusions reported in multiple clinical trials. A seminal recent study showed that infused MSCs are actively induced to undergo apoptosis by recipient cytotoxic T cells, a mechanism that triggers in vivo recipient-induced immunomodulation by such apoptotic MSCs, and the need for such recipient cytotoxic cell activity could be replaced by the administration of ex vivo-generated apoptotic MSCs. Moreover, the use of MSC-derived extracellular vesicles (MSC-EVs) is being actively explored as a cell-free therapeutic alternative over the parental MSCs. We hypothesized that the introduction of a "suicide gene" switch into MSCs may offer on-demand in vivo apoptosis of transplanted MSCs. Here, we prompted to investigate the utility of the iCasp9/AP1903 suicide gene system in inducing apoptosis of MSCs. iCasp9/AP1903-induced apoptotic MSCs (MSCiCasp9+) were tested in vitro and in in vivo models of acute colitis. Our data show a very similar and robust immunosuppressive and anti-inflammatory properties of both "parental" alive MSCGFP+ cells and apoptotic MSCiCasp9+ cells in vitro and in vivo regardless of whether apoptosis was induced in vivo or in vitro before administering MSCiCasp9+ lysates. This development of an efficient iCasp9 switch may potentiate the safety of MSC-based therapies in the case of an adverse event and, will also circumvent current logistic technical limitations and biological uncertainties associated to MSC-EVs.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Anti-Inflamatórios , Caspase 9 , Vesículas Extracelulares/transplante , Humanos , Imunomodulação , Imunossupressores
19.
Biomolecules ; 12(2)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35204722

RESUMO

Neurological disorders, including neurodegenerative diseases, are often characterized by neuroinflammation, which is largely driven by microglia, the resident immune cells of the central nervous system (CNS). Under these conditions, microglia are able to secrete neurotoxic substances, provoking neuronal cell death. However, microglia in the healthy brain carry out CNS-supporting functions. This is due to the ability of microglia to acquire different phenotypes that can play a neuroprotective role under physiological conditions or a pro-inflammatory, damaging one during disease. Therefore, therapeutic strategies focus on the downregulation of these neuroinflammatory processes and try to re-activate the neuroprotective features of microglia. Mesenchymal stem cells (MSC) of different origins have been shown to exert such effects, due to their immunomodulatory properties. In recent years, MSC derived from adipose tissue have been made the center of attention because of their easy availability and extraction methods. These cells induce a neuroprotective phenotype in microglia and downregulate neuroinflammation, resulting in an improvement of clinical symptoms in a variety of animal models for neurological pathologies, e.g., Alzheimer's disease, traumatic brain injury and ischemic stroke. In this review, we will discuss the application of adipose tissue-derived MSC and their conditioned medium, including extracellular vesicles, in neurological disorders, their beneficial effect on microglia and the signaling pathways involved.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Doenças Neurodegenerativas , Animais , Células-Tronco Mesenquimais/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Neuroproteção
20.
Pharmaceutics ; 14(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890315

RESUMO

Lysine specific demethylase 1 (LSD1; also known as KDM1A), is an epigenetic modulator that modifies the histone methylation status. KDM1A forms a part of protein complexes that regulate the expression of genes involved in the onset and progression of diseases such as cancer, central nervous system (CNS) disorders, viral infections, and others. Vafidemstat (ORY-2001) is a clinical stage inhibitor of KDM1A in development for the treatment of neurodegenerative and psychiatric diseases. However, the role of ORY-2001 targeting KDM1A in neuroinflammation remains to be explored. Here, we investigated the effect of ORY-2001 on immune-mediated and virus-induced encephalomyelitis, two experimental models of multiple sclerosis and neuronal damage. Oral administration of ORY-2001 ameliorated clinical signs, reduced lymphocyte egress and infiltration of immune cells into the spinal cord, and prevented demyelination. Interestingly, ORY-2001 was more effective and/or faster acting than a sphingosine 1-phosphate receptor antagonist in the effector phase of the disease and reduced the inflammatory gene expression signature characteristic ofEAE in the CNS of mice more potently. In addition, ORY-2001 induced gene expression changes concordant with a potential neuroprotective function in the brain and spinal cord and reduced neuronal glutamate excitotoxicity-derived damage in explants. These results pointed to ORY-2001 as a promising CNS epigenetic drug able to target neuroinflammatory and neurodegenerative diseases and provided preclinical support for the subsequent design of early-stage clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA