Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Neurophysiol ; 125(6): 2025-2033, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33909508

RESUMO

Stroke is the second leading cause of death worldwide, estimated that one-sixth of the world population will suffer it once in their life. The most common type of this medical condition is the ischemic stroke (IS), produced by a thrombotic or embolic occlusion of a major cerebral artery or its branches, leading to the formation of a complex infarct region caused by oxidative stress, excitotoxicity, and endothelial dysfunction. Nowadays, the immediate treatment for IS involves thrombolytic agents or mechanical thrombectomy, depending on the integrity of the blood-brain barrier (BBB). A common stroke complication is the hemorrhagic transformation (HT), which consists of bleeding into the ischemic brain area. Currently, better treatments for IS are urgently needed. As such, the neurohormone melatonin has been proposed as a good candidate due to its antioxidant, anti-inflammatory, and neuroprotective effects, particularly against lipid peroxidation and oxidative stress during brain ischemia. Here, we proposed to develop intravenous or intranasal melatonin nanoformulation to specifically target the brain in patients with stroke. Nowadays, the challenge is to find a formulation able to cross the barriers and reach the target organ in an effective dose to generate the pharmacological effect. In this review, we discuss the current literature about stroke pathophysiology, melatonin properties, and its potential use in nanoformulations as a novel therapeutic approach for ischemic stroke.


Assuntos
Barreira Hematoencefálica , Hemorragia Cerebral/tratamento farmacológico , Melatonina/administração & dosagem , Nanopartículas/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Acidente Vascular Cerebral/tratamento farmacológico , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/imunologia , Hemorragia Cerebral/metabolismo , Humanos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/metabolismo
2.
J Pineal Res ; 68(1): e12613, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31583753

RESUMO

Pulmonary arterial hypertension of the neonate (PAHN) is a pathophysiological condition characterized by maladaptive pulmonary vascular remodeling and abnormal contractile reactivity. This is a multifactorial syndrome with chronic hypoxia and oxidative stress as main etiological drivers, and with limited effectiveness in therapeutic approaches. Melatonin is a neurohormone with antioxidant and vasodilator properties at the pulmonary level. Therefore, this study aims to test whether a postnatal treatment with melatonin during the neonatal period improves in a long-lasting manner the clinical condition of PAHN. Ten newborn lambs gestated and born at 3600 m were used in this study, five received vehicle and five received melatonin in daily doses of 1 mg kg-1 for the first 3 weeks of life. After 1 week of treatment completion, lung tissue and small pulmonary arteries (SPA) were collected for wire myography, molecular biology, and morphostructural analyses. Melatonin decreased pulmonary arterial pressure the first 4 days of treatment. At 1 month old, melatonin decreased the contractile response to the vasoconstrictors K+ , TX2 , and ET-1. Further, melatonin increased the endothelium-dependent and muscle-dependent vasodilation of SPA. Finally, the treatment decreased pulmonary oxidative stress by inducing antioxidant enzymes and diminishing pro-oxidant sources. In conclusion, melatonin improved vascular reactivity and oxidative stress at the pulmonary level in PAHN lambs gestated and born in chronic hypoxia.


Assuntos
Pressão Arterial/efeitos dos fármacos , Hipertensão Pulmonar/fisiopatologia , Hipóxia/metabolismo , Melatonina , Estresse Oxidativo/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Melatonina/administração & dosagem , Melatonina/farmacocinética , Melatonina/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Ovinos , Vasodilatadores/administração & dosagem , Vasodilatadores/farmacocinética , Vasodilatadores/farmacologia
3.
Rev Med Chil ; 147(3): 281-288, 2019 Mar.
Artigo em Espanhol | MEDLINE | ID: mdl-31344164

RESUMO

BACKGROUND: Living above 2,500 meters in hypobaric conditions induces pulmonary arterial hypertension of the neonate (PAHN), a syndrome whose main features are: pathological remodeling of the pulmonary vessels, abnormal vascular reactivity and increased oxidative stress. Melatonin could have pulmonary antioxidant, anti-remodeling and vasodilating properties for this condition. AIM: To determine the effect of melatonin at the transcript level of prostanoid pathways in the lung of neonatal lambs gestated and born under hypobaric hypoxia. MATERIAL AND METHODS: Vehicle (1.4% of ethanol, n = 6) or melatonin (1 mg * kg1, n = 5) were administered from the postnatal day 4 to 21 to lambs gestated and born at 3,600 meters above sea level. After one week of treatment completion, lung tissue was obtained, the transcript and protein levels of prostanoid synthases and receptors were assessed by RT-PCR and Western Blot. RESULTS: Melatonin induced the expression of prostacyclin synthase transcript and increased protein expression of the prostacyclin receptor. In addition, the treatment decreased the expression of transcript and protein of cyclooxygenase-2, without changes in the expression of the prostanoid vasoconstrictor (thromboxane) pathway. CONCLUSIONS: Postnatal treatment with melatonin increases the expression of the prostacyclin-vasodilator pathway without changing the vasoconstrictor thromboxane pathway. Further, the decreased COX-2 induced by melatonin could be an index of lesser oxidative stress and inflammation in the lung.


Assuntos
Antioxidantes/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Melatonina/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Prostaglandinas/metabolismo , Animais , Animais Recém-Nascidos , Hipertensão Pulmonar/metabolismo , Hipóxia , Artéria Pulmonar/efeitos dos fármacos , Ovinos
4.
Int J Mol Sci ; 19(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373484

RESUMO

More than 140 million people live and works (in a chronic or intermittent form) above 2500 m worldwide and 35 million live in the Andean Mountains. Furthermore, in Chile, it is estimated that 55,000 persons work in high altitude shifts, where stays at lowlands and interspersed with working stays at highlands. Acute exposure to high altitude has been shown to induce oxidative stress in healthy human lowlanders, due to an increase in free radical formation and a decrease in antioxidant capacity. However, in animal models, intermittent hypoxia (IH) induce preconditioning, like responses and cardioprotection. Here, we aimed to describe in a rat model the responses on cardiac and vascular function to 4 cycles of intermittent hypobaric hypoxia (IHH). Twelve adult Wistar rats were randomly divided into two equal groups, a four-cycle of IHH, and a normobaric hypoxic control. Intermittent hypoxia was induced in a hypobaric chamber in four continuous cycles (1 cycle = 4 days hypoxia + 4 days normoxia), reaching a barometric pressure equivalent to 4600 m of altitude (428 Torr). At the end of the first and fourth cycle, cardiac structural, and functional variables were determined by echocardiography. Thereafter, ex vivo vascular function and biomechanical properties were determined in femoral arteries by wire myography. We further measured cardiac oxidative stress biomarkers (4-Hydroxy-nonenal, HNE; nytrotirosine, NT), reactive oxygen species (ROS) sources (NADPH and mitochondrial), and antioxidant enzymes activity (catalase, CAT; glutathione peroxidase, GPx, and superoxide dismutase, SOD). Our results show a higher ejection and shortening fraction of the left ventricle function by the end of the 4th cycle. Further, femoral vessels showed an improvement of vasodilator capacity and diminished stiffening. Cardiac tissue presented a higher expression of antioxidant enzymes and mitochondrial ROS formation in IHH, as compared with normobaric hypoxic controls. IHH exposure determines a preconditioning effect on the heart and femoral artery, both at structural and functional levels, associated with the induction of antioxidant defence mechanisms. However, mitochondrial ROS generation was increased in cardiac tissue. These findings suggest that initial states of IHH are beneficial for cardiovascular function and protection.


Assuntos
Hipóxia/fisiopatologia , Estresse Oxidativo , Vasodilatação , Função Ventricular Esquerda , Adaptação Fisiológica , Animais , Hipóxia/metabolismo , Masculino , Mitocôndrias Musculares/metabolismo , Miocárdio/metabolismo , Ratos , Ratos Wistar
5.
Am J Obstet Gynecol ; 215(2): 245.e1-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26902986

RESUMO

BACKGROUND: Intrauterine growth restriction is a condition in which the fetus has a birthweight and/or length <10th percentile for the gestational age. Intrauterine growth restriction can be associated with various causes, among which is low uteroplacental perfusion and chronic hypoxia during gestation. Often, intrauterine growth-restricted fetuses have increased oxidative stress; therefore, agents that decrease oxidative stress and increase utero, placental, and umbilical perfusion have been proposed as a beneficial therapeutic strategy. In this scenario, melatonin acts as an umbilical vasodilator and a potent antioxidant that has not been evaluated in pregnancies under chronic hypoxia that induce fetal growth restriction. However, this neurohormone has been proposed as a pharmacologic therapy for complicated pregnancies. OBJECTIVES: The aim of this study was to determine the effects of prenatal administration of melatonin during the last trimester of pregnancy on the biometry of the growth-restricted lambs because of developmental hypoxia. Further, we aimed to determine melatonin and cortisol levels and oxidative stress markers in plasma of pregnant ewes during the treatment. STUDY DESIGN: High-altitude pregnant sheep received either vehicle (n = 5; 5 mL 1.4% ethanol) or melatonin (n = 7; 10 mg/kg(-1)day(-1) in 5 mL 1.4% ethanol) daily during the last one-third of gestation. Maternal plasma levels of melatonin, cortisol, antioxidant capacity, and oxidative stress were determined along treatment. At birth, neonates were examined, weighed, and measured (biparietal diameter, abdominal diameter, and crown-rump length). RESULTS: Antenatal treatment with melatonin markedly decreased neonatal biometry and weight at birth. Additionally, melatonin treatment increased the length of gestation by 7.5% and shifted the time of delivery. Furthermore, the prenatal treatment doubled plasma levels of melatonin and cortisol and significantly improved the antioxidant capacity of the pregnant ewes. CONCLUSIONS: Our findings indicate that antenatal melatonin induces further intrauterine growth restriction but improves the maternal plasma antioxidant capacity. Additional studies should address the efficiency and safety of antenatal melatonin before clinical attempts on humans.


Assuntos
Peso ao Nascer/efeitos dos fármacos , Desenvolvimento Fetal/efeitos dos fármacos , Retardo do Crescimento Fetal/tratamento farmacológico , Melatonina/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Animais , Biomarcadores/sangue , Feminino , Retardo do Crescimento Fetal/induzido quimicamente , Idade Gestacional , Hidrocortisona/sangue , Melatonina/sangue , Melatonina/farmacologia , Melatonina/uso terapêutico , Estresse Oxidativo/fisiologia , Gravidez , Resultado da Gravidez , Ovinos
6.
J Pineal Res ; 58(3): 362-73, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25736256

RESUMO

Pulmonary hypertension of the newborn (PHN) constitutes a critical condition with severe cardiovascular and neurological consequences. One of its main causes is hypoxia during gestation, and thus, it is a public health concern in populations living above 2500 m. Although some mechanisms are recognized, the pathophysiological facts that lead to PHN are not fully understood, which explains the lack of an effective treatment. Oxidative stress is one of the proposed mechanisms inducing pulmonary vascular dysfunction and PHN. Therefore, we assessed whether melatonin, a potent antioxidant, improves pulmonary vascular function. Twelve newborn sheep were gestated, born, and raised at 3600 meters. At 3 days old, lambs were catheterized and daily cardiovascular measurements were recorded. Lambs were divided into two groups, one received daily vehicle as control and another received daily melatonin (1 mg/kg/d), for 8 days. At 11 days old, lung tissue and small pulmonary arteries (SPA) were collected. Melatonin decreased pulmonary pressure and resistance for the first 3 days of treatment. Further, melatonin significantly improved the vasodilator function of SPA, enhancing the endothelial- and muscular-dependent pathways. This was associated with an enhanced nitric oxide-dependent and nitric oxide independent vasodilator components and with increased nitric oxide bioavailability in lung tissue. Further, melatonin reduced the pulmonary oxidative stress markers and increased enzymatic and nonenzymatic antioxidant capacity. Finally, these effects were associated with an increase of lumen diameter and a mild decrease in the wall of the pulmonary arteries. These outcomes support the use of melatonin as an adjuvant in the treatment for PHN.


Assuntos
Antioxidantes/farmacologia , Hipertensão Pulmonar/metabolismo , Pulmão/efeitos dos fármacos , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Pulmão/irrigação sanguínea , Artéria Pulmonar/fisiologia , Ovinos
7.
Mar Drugs ; 13(2): 838-60, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25658050

RESUMO

Intermittent hypobaric hypoxia (IH) is linked with oxidative stress, impairing cardiac function. However, early IH also activate cardio-protective mechanisms. Omega 3 fatty acids (Ω3) induce cardioprotection by reducing infarct size and reinforcing antioxidant defenses. The aim of this work was to determine the combined effects of IH and Ω3 on cardiac function; oxidative balance and inflammatory state. Twenty-eight rats were randomly divided into four groups: normobaric normoxia (N); N + Ω3 (0.3 g·kg-1·day-1); IH; and IH + Ω3. IH was induced by 4 intercalate periods of hypoxia (4 days)-normoxia (4 days) in a hypobaric chamber during 32 days. At the end of the exposure, hearts were mounted in a Langendorff system and subjected to 30 min of ischemia followed by 120 min of reperfusion. In addition, we determined HIF-1α and ATP levels, as well as oxidative stress by malondialdehyde and nitrotyrosine quantification. Further, the expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase was determined. NF-kappaB and myeloperoxidase levels were assessed in the hearts. Relative to N hearts, IH improved left ventricular function (Left ventricular developed pressure: N; 21.8 ± 3.4 vs. IH; 42.8 ± 7.1 mmHg; p < 0.05); reduced oxidative stress (Malondialdehyde: N; 14.4 ± 1.8 vs. IH; 7.3 ± 2.1 µmol/mg prot.; p < 0.05); and increased antioxidant enzymes expression. Supplementation with Ω3 induces similar responses as IH group. Our findings suggest that both, IH and Ω3 in an independent manner, induce functional improvement by antioxidant and anti-inflammatory mechanisms, establishing cardio-protection.


Assuntos
Doença da Altitude/tratamento farmacológico , Antioxidantes/farmacologia , Cardiotônicos/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Hipóxia/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Doença da Altitude/metabolismo , Animais , Suplementos Nutricionais , Metabolismo Energético/efeitos dos fármacos , Coração/efeitos dos fármacos , Hipóxia/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Técnicas In Vitro , Inflamação/metabolismo , Inflamação/prevenção & controle , Masculino , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Função Ventricular Esquerda/efeitos dos fármacos
8.
Biochem Pharmacol ; : 116318, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38801924

RESUMO

Advances in understanding gene expression regulation through epigenetic mechanisms have contributed to elucidating the regulatory mechanisms of noncoding RNAs as pharmacological targets in several diseases. MicroRNAs (miRs) are a class of evolutionarily conserved, short, noncoding RNAs regulating in a concerted manner gene expression at the post-transcriptional level by targeting specific sequences of the 3'-untranslated region of mRNA. Conversely, mechanisms of cardiovascular disease (CVD) remain largely elusive due to their life-course origins, multifactorial pathophysiology, and co-morbidities. In this regard, CVD treatment with conventional medications results in therapeutic failure due to progressive resistance to monotherapy, which overlooks the multiple factors involved, and reduced adherence to poly-pharmacology approaches. Consequently, considering its role in regulating complete gene pathways, miR-based drugs have appreciably progressed into preclinical and clinical testing. This review summarizes the current knowledge about the mechanisms of miRs in cardiovascular disease, focusing specifically on describing how clinical chemistry and physics have improved the stability of the miR molecule. In addition, a comprehensive review of the main miRs involved in cardiovascular disease and the clinical trials in which these molecules are used as active pharmacological molecules is provided.

9.
Biochem Pharmacol ; 207: 115356, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455671

RESUMO

Neonatal encephalopathy (NE) is a pathological condition that describes a neurocognitive malfunction in the newborn that arises from fetal, peripartum, or intrapartum events of multifactorial nature, having a poor prognosis and accounting for an incidence of 5-8 per 1000 live births. Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most studied paradigms of NE, caused by a scarce cerebral perfusion and oxygen supply during perinatal life. The cerebral hypoxic-ischemic insult promotes a loss of permeability of the blood-brain barrier (BBB), an essential structural intermediary of blood-brain communication. This permeability disruption is associated with an increase in inflammatory cytokines, an increase of adhesion molecules, and oxidative stress which disturb the tight junction (TJ) performance and enable transcytosis and paracellular leakage, ultimately leading to death from brain cells. In this context, TJs proteins are essential to preserving the barrier mechanical stability and signaling that modulates the brain-blood vessel multicellular domains, known as neurovascular units (NVU). Recent studies have proposed different strategies with neuroprotective effects that allow for maintaining or restoring the integrity and permeability of the BBB. This review identifies and discusses regulator mechanisms and novel aspects of TJs in the BBB disruption induced by cerebral hypoxic insults during the perinatal period, evaluating potential pharmacological strategies to safeguard BBB integrity.


Assuntos
Barreira Hematoencefálica , Hipóxia-Isquemia Encefálica , Recém-Nascido , Gravidez , Feminino , Humanos , Barreira Hematoencefálica/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Junções Íntimas/metabolismo , Encéfalo/metabolismo , Hipóxia/metabolismo , Permeabilidade
10.
Life Sci ; 326: 121800, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245841

RESUMO

AIMS: Chronic intermittent hypobaric hypoxia (CIHH) exposure due to shift work occurs mainly in 4 × 4 or 7 × 7 days shifts in mining, astronomy, and customs activities, among other institutions. However, the long-lasting effects of CIHH on cardiovascular structure and function are not well characterized. We aimed to investigate the effects of CIHH on the cardiac and vascular response of adult rats simulating high-altitude (4600 m) x low-altitude (760 m) working shifts. MAIN METHODS: We analyzed in vivo cardiac function through echocardiography, ex vivo vascular reactivity by wire myography, and in vitro cardiac morphology by histology and protein expression and immunolocalization by molecular biology and immunohistochemistry techniques in 12 rats, 6 exposed to CIHH in the hypoxic chamber, and respective normobaric normoxic controls (n = 6). KEY FINDINGS: CIHH induced cardiac dysfunction with left and right ventricle remodeling, associated with an increased collagen content in the right ventricle. In addition, CIHH increased HIF-1α levels in both ventricles. These changes are associated with decreased antioxidant capacity in cardiac tissue. Conversely, CIHH decreased contractile capacity with a marked decreased in nitric oxide-dependent vasodilation in both, carotid and femoral arteries. SIGNIFICANCE: These data suggest that CIHH induces cardiac and vascular dysfunction by ventricular remodeling and impaired vascular vasodilator function. Our findings highlight the impact of CIHH in cardiovascular function and the importance of a periodic cardiovascular evaluation in high-altitude workers.


Assuntos
Altitude , Hipóxia , Ratos , Animais , Ratos Sprague-Dawley , Coração , Ventrículos do Coração/metabolismo
11.
Vet Sci ; 10(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36851448

RESUMO

BACKGROUND: Biometrical and blood flow examinations are fundamental for assessing fetoplacental development during pregnancy. Guinea pigs have been proposed as a good model to study fetal development and related gestational complications; however, longitudinal growth and blood flow changes in utero have not been properly described. This study aimed to describe fetal and placental growth and blood flow of the main intrauterine vascular beds across normal guinea pig pregnancy and to discuss the relevance of this data for human pregnancy. METHODS: Pregnant guinea pigs were studied from day 25 of pregnancy until term (day ~70) by ultrasound and Doppler assessment. The results were compared to human data from the literature. RESULTS: Measurements of biparietal diameter (BPD), cranial circumference (CC), abdominal circumference, and placental biometry, as well as pulsatility index determination of umbilical artery, middle cerebral artery (MCA), and cerebroplacental ratio (CPR), were feasible to determine across pregnancy, and they could be adjusted to linear or nonlinear functions. In addition, several of these parameters showed a high correlation coefficient and could be used to assess gestational age in guinea pigs. We further compared these data to ultrasound variables from human pregnancy with high similarities. CONCLUSIONS: BPD and CC are the most reliable measurements to assess fetal growth in guinea pigs. Furthermore, this is the first report in which the MCA pulsatility index and CPR are described across guinea pig gestation. The guinea pig is a valuable model to assess fetal growth and blood flow distribution, variables that are comparable with human pregnancy.

12.
Sci Rep ; 12(1): 3790, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260626

RESUMO

High altitude hypoxia is a condition experienced by diverse populations worldwide. In addition, several jobs require working shifts where workers are exposed to repetitive cycles of hypobaric hypoxia and normobaric normoxia. Currently, few is known about the biomechanical cardiovascular responses of this condition. In the present study, we investigate the cycle-dependent biomechanical effects of intermittent hypobaric hypoxia (IHH) on the thoracic aorta artery, in terms of both structure and function. To determine the vascular effects of IHH, functional, mechanical and histological approaches were carried out in the thoracic aorta artery, using uniaxial, pre-stretch, ring opening, myography, and histological tests. Three groups of rats were established: control (normobaric normoxia, NN), 4-cycles of intermittent hypoxia (short-term intermittent hypobaric hypoxia, STH), and 10-cycles of intermittent hypoxia (long-term intermittent hypobaric hypoxia, LTH). The pre-stretch and ring opening tests, aimed at quantifying residual strains of the tissues in longitudinal and circumferential directions, showed that the hypoxia condition leads to an increase in the longitudinal stretch and a marked decrease of the circumferential residual strain. The uniaxial mechanical tests were used to determine the elastic properties of the tissues, showing that a general stiffening process occurs during the early stages of the IH (STH group), specially leading to a significative increase in the high strain elastic modulus ([Formula: see text]) and an increasing trend of low strain elastic modulus ([Formula: see text]). In contrast, the LTH group showed a more control-like mechanical behavior. Myography test, used to assess the vasoactive function, revealed that IH induces a high sensitivity to vasoconstrictor agents as a function of hypoxic cycles. In addition, the aorta showed an increased muscle-dependent vasorelaxation on the LTH group. Histological tests, used to quantify the elastic fiber, nuclei, and geometrical properties, showed that the STH group presents a state of vascular fibrosis, with a significant increase in elastin content, and a tendency towards an increase in collagen fibers. In addition, advanced stages of IH (LTH), showed a vascular remodeling effect with a significant increase of internal and external diameters. Considering all the multidimensional vascular effects, we propose the existence of a long-term passive adaptation mechanism and vascular dysfunction as cycle-dependent effects of intermittent exposures to hypobaric hypoxia.


Assuntos
Doença da Altitude , Hipóxia , Animais , Aorta/patologia , Coração/fisiologia , Ratos , Vasodilatação
13.
Antioxidants (Basel) ; 11(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35739940

RESUMO

More than 80 million people live and work (in a chronic or intermittent form) above 2500 masl, and 35 million live in the Andean Mountains. Furthermore, in Chile, it is estimated that 100,000 people work in high-altitude shifts, where stays in the lowlands are interspersed with working visits in the highlands. Acute exposure to high altitude has been shown to induce oxidative stress in healthy human lowlanders due to increased free radical formation and decreased antioxidant capacity. However, intermittent hypoxia (IH) induces preconditioning in animal models, generating cardioprotection. Here, we aim to describe the responses of a cardiac function to four cycles of intermittent hypobaric hypoxia (IHH) in a rat model. The twelve adult Wistar rats were randomly divided into two equal groups, a four-cycle of IHH and a normobaric hypoxic control. Intermittent hypoxia was induced in a hypobaric chamber in four continuous cycles (1 cycle = 4 days of hypoxia + 4 days of normoxia), reaching a barometric pressure equivalent to 4600 m of altitude (428 Torr). At the end of the fourth cycle, cardiac structural and functional variables were also determined by echocardiography; furthermore, cardiac oxidative stress biomarkers (4-Hydroxynonenal, HNE; nitrotyrosine, NT), antioxidant enzymes, and NLRP3 inflammasome panel expression are also determined. Our results show a higher ejection and a shortening fraction of the left ventricle function by the end of the fourth cycle. Furthermore, cardiac tissue presented a decreased expression of antioxidant proteins. However, a decrease in IL-1ß, TNF-αn, and oxidative stress markers is observed in IHH compared to normobaric hypoxic controls. Non-significant differences were found in protein levels of NLRP3 and caspase-1. IHH exposure determines structural and functional heart changes. These findings suggest that initial states of IHH are beneficial for cardiovascular function and protection.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36568262

RESUMO

Central nervous system (CNS)-related diseases are difficult to treat as most therapeutic agents they cannot reach the brain tissue, mainly due to the blood-brain barrier (BBB), arguably the tightest barrier between the human body and cerebral parenchyma, which routinely excludes most xenobiotic therapeutics compounds. The BBB is a multicellular complex that structurally forms the neurovascular unit (NVU) and is organized by neuro-endothelial and glial cells. BBB breakdown and dysfunction from the cerebrovascular cells lead to leakages of systemic components from the blood into the CNS, contributing to neurological deficits. Understanding the molecular mechanisms that regulate BBB permeability and disruption is essential for establishing future therapeutic strategies to restore permeability and improve cerebrovascular health. MicroRNAs (miRNAs), a type of small non-coding RNAs, are emerging as an important regulator of BBB integrity by modulating gene expression by targeting mRNA transcripts. miRNAs is implicated in the development and progression of various illnesses. Conversely, nanoparticle carriers offer unprecedented opportunities for cell-specific controlled delivery of miRNAs for therapeutic purposes. In this sense, we present in this graphical review critical evidence in the regulation of cell junction expression mediated by miRNAs induced by hypoxia and for the use of nanoparticles for the delivery of miRNA-based therapeutics in the treatment of BBB permeability.

15.
Front Physiol ; 13: 864010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733986

RESUMO

Neonatal pulmonary hypertension (NPHT) is produced by sustained pulmonary vasoconstriction and increased vascular remodeling. Soluble guanylyl cyclase (sGC) participates in signaling pathways that induce vascular vasodilation and reduce vascular remodeling. However, when sGC is oxidized and/or loses its heme group, it does not respond to nitric oxide (NO), losing its vasodilating effects. sGC protein expression and function is reduced in hypertensive neonatal lambs. Currently, NPHT is treated with NO inhalation therapy; however, new treatments are needed for improved outcomes. We used Cinaciguat (BAY-582667), which activates oxidized and/or without heme group sGC in pulmonary hypertensive lambs studied at 3,600 m. Our study included 6 Cinaciguat-treated (35 ug kg-1 day-1 x 7 days) and 6 Control neonates. We measured acute and chronic basal cardiovascular variables in pulmonary and systemic circulation, cardiovascular variables during a superimposed episode of acute hypoxia, remodeling of pulmonary arteries and changes in the right ventricle weight, vasoactive functions in small pulmonary arteries, and expression of NO-sGC-cGMP signaling pathway proteins involved in vasodilation. We observed a decrease in pulmonary arterial pressure and vascular resistance during the acute treatment. In contrast, the pulmonary pressure did not change in the chronic study due to increased cardiac output, resulting in lower pulmonary vascular resistance in the last 2 days of chronic study. The latter may have had a role in decreasing right ventricular hypertrophy, although the direct effect of Cinaciguat on the heart should also be considered. During acute hypoxia, the pulmonary vascular resistance remained low compared to the Control lambs. We observed a higher lung artery density, accompanied by reduced smooth muscle and adventitia layers in the pulmonary arteries. Additionally, vasodilator function was increased, and vasoconstrictor function was decreased, with modifications in the expression of proteins linked to pulmonary vasodilation, consistent with low pulmonary vascular resistance. In summary, Cinaciguat, an activator of sGC, induces cardiopulmonary modifications in chronically hypoxic and pulmonary hypertensive newborn lambs. Therefore, Cinaciguat is a potential therapeutic tool for reducing pulmonary vascular remodeling and/or right ventricular hypertrophy in pulmonary arterial hypertension syndrome.

16.
Vascul Pharmacol ; 144: 106971, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35150933

RESUMO

BACKGROUND: Fetal chronic hypoxia is associated with blood flow redistribution and oxidative damage in the brain, leading to increased perinatal morbimortality. Melatonin reduces oxidative stress, improves vascular function, and has neuroprotective effects. OBJECTIVES: This study aimed to determine the effects of an oral melatonin treatment to pregnant ewes at high-altitude, on the cerebrovascular function of their neonates. STUDY DESIGN: Ten high-altitude pregnant sheep received either vehicle or melatonin (10 mg/d) during the last third of gestation until delivery. Postnatal daily hemodynamic measurements were recorded from lambs until 12 days old. In addition, lambs were submitted to a graded oxygenation protocol to assess cerebrovascular responses. Subsequently, lambs were euthanized, and middle cerebral arteries (MCA) were collected for vascular function, protein levels, and morphostructural analyses. RESULTS: Antenatal treatment doubled plasma levels of melatonin in pregnant ewes. Melatonin increased carotid flow and decreased carotid vascular resistance in the lambs by the end of the first week. Furthermore, melatonin increased MCA's maximal vasoconstrictor and vasodilator responses, associated with nitric oxide-dependent and independent mechanisms. CONCLUSIONS: An oral treatment with melatonin during pregnancy promotes postnatal cerebral perfusion in chronically hypoxic neonates. Melatonin is a potential treatment for cerebrovascular dysfunction due to perinatal chronic hypoxia.


Assuntos
Melatonina , Animais , Antioxidantes/farmacologia , Feminino , Hipóxia/tratamento farmacológico , Pulmão , Melatonina/farmacologia , Estresse Oxidativo , Gravidez , Ovinos
17.
Front Physiol ; 12: 717550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489733

RESUMO

Fetal chronic hypoxia leads to intrauterine growth restriction (IUGR), which is likely to reduce oxygen delivery to the brain and induce long-term neurological impairments. These indicate a modulatory role for oxygen in cerebrovascular development. During intrauterine hypoxia, the fetal circulation suffers marked adaptations in the fetal cardiac output to maintain oxygen and nutrient delivery to vital organs, known as the "brain-sparing phenotype." This is a well-characterized response; however, little is known about the postnatal course and outcomes of this fetal cerebrovascular adaptation. In addition, several neurodevelopmental disorders have their origins during gestation. Still, few studies have focused on how intrauterine fetal hypoxia modulates the normal brain development of the blood-brain barrier (BBB) in the IUGR neonate. The BBB is a cellular structure formed by the neurovascular unit (NVU) and is organized by a monolayer of endothelial and mural cells. The BBB regulates the entry of plasma cells and molecules from the systemic circulation to the brain. A highly selective permeability system achieves this through integral membrane proteins in brain endothelial cells. BBB breakdown and dysfunction in cerebrovascular diseases lead to leakage of blood components into the brain parenchyma, contributing to neurological deficits. The fetal brain circulation is particularly susceptible in IUGR and is proposed to be one of the main pathological processes deriving BBB disruption. In the last decade, several epigenetic mechanisms activated by IU hypoxia have been proposed to regulate the postnatal BBB permeability. However, few mechanistic studies about this topic are available, and little evidence shows controversy. Therefore, in this mini-review, we analyze the BBB permeability-associated epigenetic mechanisms in the brain exposed to chronic intrauterine hypoxia.

18.
Front Physiol ; 12: 786038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950057

RESUMO

An estimated human population of 170 million inhabit at high-altitude (HA, above 2,500 m). The potential pathological effects of HA hypobaric hypoxia during gestation have been the focus of several researchers around the world. The studies based on the Himalayan and Central/South American mountains are particularly interesting as these areas account for nearly 70% of the HA world population. At present, studies in human and animal models revealed important alterations in fetal development and growth at HA. Moreover, vascular responses to chronic hypobaria in the pregnant mother and her fetus may induce marked cardiovascular impairments during pregnancy or in the neonatal period. In addition, recent studies have shown potential long-lasting postnatal effects that may increase cardiovascular risk in individuals gestated under chronic hypobaria. Hence, the maternal and fetal adaptive responses to hypoxia, influenced by HA ancestry, are vital for a better developmental and cardiovascular outcome of the offspring. This mini-review exposes and discusses the main determinants of vascular dysfunction due to developmental hypoxia at HA, such as the Andean Mountains, at the maternal and fetal/neonatal levels. Although significant advances have been made from Latin American studies, this area still needs further investigations to reveal the mechanisms involved in vascular dysfunction, to estimate complications of pregnancy and postnatal life adequately, and most importantly, to determine potential treatments to prevent or treat the pathological effects of being developed under chronic hypobaric hypoxia.

19.
Vascul Pharmacol ; 138: 106853, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33766627

RESUMO

Pulmonary arterial hypertension of the newborn (PAHN) is a syndrome caused by chronic hypoxia, characterized by decreased vasodilator function, a marked vasoconstrictor activity, proliferation of smooth muscle cells (SMC) and thickening of the extracellular matrix in the pulmonary circulation, among other characteristics. Prostaglandins are derived from the arachidonic acid (AA) metabolism and are important regulators of pulmonary vascular tone. Since hypoxia induces oxidative stress and has been related to PAHN, a postnatal treatment with melatonin has been proposed due to its antioxidant properties. Here, we determined the effects of melatonin on pulmonary vascular homeostasis given by prostanoids. Ten PAHN newborn lambs were divided in two groups and treated either with vehicle or melatonin. After 1 week of treatment, we assessed pulmonary vascular prostanoids function and expression by wire myography, RT-PCR, Western Blot and immunohistochemistry. Melatonin improved in vivo and ex vivo pulmonary vasodilation. This was associated with an increased function and expression of vasodilator prostanoids at the expense of vasoconstrictor prostanoids. Our study demonstrates for the first time that melatonin may enhance the vasodilator prostanoid pathway in PAHN.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Arterial/efeitos dos fármacos , Melatonina/farmacologia , Prostaglandinas/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Artéria Pulmonar/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Animais Recém-Nascidos , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Carneiro Doméstico , Transdução de Sinais
20.
Antioxidants (Basel) ; 10(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34829529

RESUMO

Pulmonary arterial hypertension of newborns (PAHN) constitutes a critical condition involving both severe cardiac remodeling and right ventricle dysfunction. One main cause of this condition is perinatal hypoxia and oxidative stress. Thus, it is a public health concern for populations living above 2500 m and in cases of intrauterine chronic hypoxia in lowlands. Still, pulmonary and cardiac impairments in PAHN lack effective treatments. Previously we have shown the beneficial effects of neonatal melatonin treatment on pulmonary circulation. However, the cardiac effects of this treatment are unknown. In this study, we assessed whether melatonin improves cardiac function and modulates right ventricle (RV) oxidative stress. Ten lambs were gestated, born, and raised at 3600 m. Lambs were divided in two groups. One received daily vehicle as control, and another received daily melatonin (1 mg·kg-1·d-1) for 21 days. Daily cardiovascular measurements were recorded and, at 29 days old, cardiac tissue was collected. Melatonin decreased pulmonary arterial pressure at the end of the experimental period. In addition, melatonin enhanced manganese superoxide dismutase and catalase (CAT) expression, while increasing CAT activity in RV. This was associated with a decrease in superoxide anion generation at the mitochondria and NADPH oxidases in RV. Finally, these effects were associated with a marked decrease of oxidative stress markers in RV. These findings support the cardioprotective effects of an oral administration of melatonin in newborns that suffer from developmental chronic hypoxia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA