Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 27(1): 208-215, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30528162

RESUMO

We previously demonstrated that capsazepine (CPZ), a synthetic transient receptor potential Vanilloid subtype 1 (TRPV1) antagonist, has significant anti-cancer effects in vivo. The purpose of this study was to develop more potent analogs based upon CPZ pharmacophore and structure-activity relationships (SAR) across analogs. We generated 30 novel compounds and screened for their anti-proliferative effects in cultured HeLa cervical cancer cells. Cell viability assays identified multiple compounds with IC50s < 15 µM and one compound, 29 with an IC50 < 5 µM; six fold more potent than CPZ. We validated the anti-proliferative efficacy of two lead compounds, 17 and 29, in vivo using HeLa-derived xenografts in athymic nude mice. Both analogs significantly reduced tumor volumes by day 8 compared to control treated animals (p < 0.001) with no observable adverse effects. Calcium imaging determined that compound 17 activates TRPV1 whereas 29 neither activates nor inhibits TRPV1; indicating a unique mechanism-of-action that does not involve TRPV1 signaling. Cell viability assays using a panel of additional tumor types including oral squamous cell carcinoma, non-small cell lung cancer (NSCLC), breast cancer, and prostate cancer cell lines (HSC-3, H460, MDA-231, and PC-3 respectively) demonstrated that both lead compounds were efficacious against every cancer type tested. Compounds 29 displayed IC50s of 1-2.5 µM in HSC-3and PC-3cells. Thus, we propose that these novel CPZ analogs may serve as efficacious therapeutic agents against multiple tumor types that warrant further development for clinical application.


Assuntos
Antineoplásicos/uso terapêutico , Capsaicina/análogos & derivados , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Capsaicina/síntese química , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos Nus , Estrutura Molecular , Relação Estrutura-Atividade , Canais de Cátion TRPV/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Synapse ; 67(11): 757-72, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23720407

RESUMO

Stress differentially affects hippocampal-dependent learning relevant to addiction and morphology in male and female rats. Mu opioid receptors (MORs), which are located in parvalbumin (PARV)-containing GABAergic interneurons and are trafficked in response to changes in the hormonal environment, play a critical role in promoting principal cell excitability and long-term potentiation. Here, we compared the effects of acute and chronic immobilization stress (AIS and CIS) on MOR trafficking in PARV-containing neurons in the hilus of the dentate gyrus in female and male rats using dual label immunoelectron microscopy. Following AIS, the density of MOR silver-intensified gold particles (SIGs) in the cytoplasm of PARV-labeled dendrites was significantly reduced in females (estrus stage). Conversely, AIS significantly increased the proportion of cytoplasmic MOR SIGs in PARV-labeled dendrites in male rats. CIS significantly reduced the number of PARV-labeled neurons in the dentate hilus of males but not females. However, MOR/PARV-labeled dendrites and terminals were significantly smaller in CIS females, but not males, compared with controls. Following CIS, the density of cytoplasmic MOR SIGs increased in PARV-labeled dendrites and terminals in females. Moreover, the proportion of near-plasmalemmal MOR SIGs relative to total decreased in large PARV-labeled dendrites in females. After CIS, no changes in the density or trafficking of MOR SIGs were seen in PARV-labeled dendrites or terminals in males. These data show that AIS and CIS differentially affect available MOR pools in PARV-containing interneurons in female and male rats. Furthermore, they suggest that CIS could affect principal cell excitability in a manner that maintains learning processes in females but not males.


Assuntos
Giro Denteado/metabolismo , Interneurônios/metabolismo , Parvalbuminas/análise , Receptores Opioides mu/metabolismo , Estresse Psicológico/metabolismo , Animais , Membrana Celular/metabolismo , Citoplasma/metabolismo , Dendritos/metabolismo , Giro Denteado/citologia , Feminino , Interneurônios/química , Masculino , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/genética , Caracteres Sexuais
4.
Endocrinology ; 149(9): 4615-21, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18511514

RESUMO

The mechanisms by which estradiol exerts specific actions on neural function are unclear. In brain the actions of estrogen receptor (ER) alpha are well documented, whereas the functions of ERbeta are not yet fully elucidated. Here, we report that ERbeta inhibits the activity of ERalpha in an anatomically specific manner within the neonatal (postnatal d 7) brain. Using selective agonists we demonstrate that the selective activation of ERalpha in the relative absence of ERbeta activation induces progesterone receptor expression to a greater extent than estradiol alone in the ventromedial nucleus, but not the medial preoptic nucleus, despite high ERalpha expression. Selective activation of ERbeta attenuates the ERalpha-mediated increase in progesterone receptor expression in the ventromedial nucleus but has no effect in medial preoptic nucleus. These results suggest that ERalpha/ERbeta interactions may regulate the effects of estrogens on neural development and reveal the neonatal brain as a unique model in which to study the specificity of steroid-induced gene expression.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/fisiologia , Estrogênios/farmacologia , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos , Núcleo Hipotalâmico Ventromedial/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/metabolismo , Feminino , Nitrilas/farmacologia , Fenóis , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Ligação Proteica , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Distribuição Tecidual/efeitos dos fármacos , Núcleo Hipotalâmico Ventromedial/metabolismo
5.
J Comp Neurol ; 526(14): 2285-2300, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30069875

RESUMO

The development of medial temporal lobe circuits is critical for subsequent learning and memory functions later in life. The present study reports the expression of progesterone receptor (PR), a powerful transcription factor of the nuclear steroid receptor superfamily, in Cajal-Retzius cells of the molecular layer of the dentate gyrus of rats. PR was transiently expressed from the day of birth through postnatal day 21, but was absent thereafter. Although PR immunoreactive (PR-ir) cells did not clearly express typical markers of mature neurons, they possessed an ultrastructural morphology consistent with neurons. PRir cells did not express markers for GABAergic neurons, neuronal precursor cells, nor radial glia. However, virtually all PR cells co-expressed the calcium binding protein, calretinin, and the glycoprotein, reelin, both reliable markers for Cajal-Retzius neurons, a transient population of developmentally critical pioneer neurons that guide synaptogenesis of perforant path afferents and histogenesis of the dentate gyrus. Indeed, inhibition of PR activity during the first two weeks of life impaired adult performance on both the novel object recognition and object placement memory tasks, two behavioral tasks hypothesized to describe facets of episodic-like memory in rodents. These findings suggest that PR plays an unexplored and important role in the development of hippocampal circuitry and adult memory function.


Assuntos
Giro Denteado/crescimento & desenvolvimento , Giro Denteado/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Memória/fisiologia , Neurônios/metabolismo , Receptores de Progesterona/biossíntese , Receptores de Progesterona/genética , Animais , Comportamento Animal , Feminino , Interneurônios/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/genética , Mifepristona/farmacologia , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/ultraestrutura , Gravidez , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Progesterona/antagonistas & inibidores , Proteína Reelina , Ácido gama-Aminobutírico/fisiologia
6.
Front Endocrinol (Lausanne) ; 2(18)2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-22468144

RESUMO

Opioids play a critical role in hippocampally dependent behavior and plasticity. In the hippocampal formation, mu opioid receptors (MOR) are prominent in parvalbumin (PARV) containing interneurons. Previously we found that gonadal hormones modulate the trafficking of MORs in PARV interneurons. Although sex differences in response to stress are well documented, the point at which opioids, sex and stress interact to influence hippocampal function remains elusive. Thus, we used quantitative immunocytochemistry in combination with light and electron microscopy for the phosphorylated MOR at the SER375 carboxy-terminal residue (pMOR) in male and female rats to assess these interactions. In both sexes, pMOR-immunoreactivity (ir) was prominent in axons and terminals and in a few neuronal somata and dendrites, some of which contained PARV in the mossy fiber pathway region of the dentate gyrus (DG) hilus and CA3 stratum lucidum. In unstressed rats, the levels of pMOR-ir in the DG or CA3 were not affected by sex or estrous cycle stage. However, immediately following 30 minutes of acute immobilization stress (AIS), males had higher levels of pMOR-ir whereas females at proestrus and estrus (high estrogen stages) had lower levels of pMOR-ir within the DG. In contrast, the number and types of neuronal profiles with pMOR-ir were not altered by AIS in either males or proestrus females. These data demonstrate that although gonadal steroids do not affect pMOR levels at resting conditions, they are differentially activated both pre- and post-synaptic MORs following stress. These interactions may contribute to the reported sex differences in hippocampally dependent behaviors in stressed animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA