RESUMO
Zoonotic transmission of coronaviruses poses an ongoing threat to human populations. Endemic outbreaks of swine acute diarrhea syndrome coronavirus (SADS-CoV) have caused severe economic losses in the pig industry and have the potential to cause human outbreaks. Currently, there are no vaccines or specific antivirals against SADS-CoV, and our limited understanding of SADS-CoV host entry factors could hinder prompt responses to a potential human outbreak. Using a genomewide CRISPR knockout screen, we identified placenta-associated 8 protein (PLAC8) as an essential host factor for SADS-CoV infection. Knockout of PLAC8 abolished SADS-CoV infection, which was restored by complementing PLAC8 from multiple species, including human, rhesus macaques, mouse, pig, pangolin, and bat, suggesting a conserved infection pathway and susceptibility of SADS-CoV among mammals. Mechanistically, PLAC8 knockout does not affect viral entry; rather, knockout cells displayed a delay and reduction in viral subgenomic RNA expression. In a swine primary intestinal epithelial culture (IEC) infection model, differentiated cultures have high levels of PLAC8 expression and support SADS-CoV replication. In contrast, expanding IECs have low levels of PLAC8 expression and are resistant to SADS-CoV infection. PLAC8 expression patterns translate in vivo; the immunohistochemistry of swine ileal tissue revealed high levels of PLAC8 protein in neonatal compared to adult tissue, mirroring the known SADS-CoV pathogenesis in neonatal piglets. Overall, PLAC8 is an essential factor for SADS-CoV infection and may serve as a promising target for antiviral development for potential pandemic SADS-CoV.
Assuntos
Alphacoronavirus , Infecções por Coronavirus , Doenças dos Suínos , Alphacoronavirus/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Infecções por Coronavirus/epidemiologia , SuínosRESUMO
Intestinal transplantation (IT) is the final treatment option for intestinal failure. Static cold storage (CS) is the standard preservation method used for intestinal allografts. However, CS and subsequent transplantation induce ischemia-reperfusion injury (IRI). Severe IRI impairs epithelial barrier function, including loss of intestinal stem cells (ISC), critical to epithelial regeneration. Normothermic machine perfusion (NMP) preservation of kidney and liver allografts minimizes CS-associated IRI; however, it has not been used clinically for IT. We hypothesized that intestine NMP would induce less epithelial injury and better protect the intestine's regenerative ability when compared with CS. Full-length porcine jejunum and ileum were procured, stored at 4 °C, or perfused at 34 °C for 6 hours (T6), and transplanted. Histology was assessed following procurement (T0), T6, and 1 hour after reperfusion. Real-time quantitative reverse transcription polymerase chain reaction, immunofluorescence, and crypt culture measured ISC viability and proliferative potential. A greater number of NMP-preserved intestine recipients survived posttransplant, which correlated with significantly decreased tissue injury following 1-hour reperfusion in NMP compared with CS samples. Additionally, ISC gene expression, spheroid area, and cellular proliferation were significantly increased in NMP-T6 compared with CS-T6 intestine. NMP appears to reduce IRI and improve graft regeneration with improved ISC viability and proliferation.
Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Suínos , Animais , Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Fígado/patologia , Perfusão/métodos , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Aloenxertos/patologia , IntestinosRESUMO
Intestinal ischemia and reperfusion injury (IRI) is a deadly and common condition. Death is associated with sepsis due to insufficient epithelial repair, requiring stem cell-driven regeneration, typically beginning 48 hours after injury. Animal models are critical to advancing this field. To effectively study epithelial healing, models must survive clinically relevant intestinal ischemic injury extending to the crypt. Though mouse models are indispensable to intestinal research, their application for studying epithelial repair following severe IRI may be limited. Ischemic injury was induced in mouse and porcine jejunum for up to 3 hours, with up to 72 hours of reperfusion. Histologic damage was scored by Chiu-Park grade and animal survival was assessed. Findings were compared between species. A mouse IRI literature review was performed to evaluate the purported degree of injury, duration of recovery, and reported survival rates. In mice and pigs, 3 hours of ischemia induced severe, reliable injury extending into the crypt. However, at 48 hours, mouse survival was only 23.5% compared to 100% survival in pigs. In literature, ischemia was induced for >1 hour in only 4 of 102 mouse studies and none to 3 hours. Recovery was attempted for 48 hours in only 6 reports. 47 studies reported intestinal crypt injury. Of those that featured histologic intestinal crypt damage, survival rates at 48 hours ranged from 10-50% (median 30%). Mouse models are not ideal to study intestinal stem cell mediated recovery from severe IRI. Alternative large animal models, like pigs, are recommended.
RESUMO
Intestinal epithelial stem cells (ISCs) are responsible for intestinal epithelial barrier renewal; thereby, ISCs play a critical role in intestinal pathophysiology research. While transgenic ISC reporter mice are available, advanced translational studies lack a large animal model. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer (CRC) model. We applied histology, immunofluorescence, fluorescence-activated cell sorting, flow cytometry, gene expression quantification, and 3D organoid cultures to whole tissue and single cells from the duodenum, jejunum, ileum, and colon of LGR5-H2B-GFP and wild-type pigs. Ileum and colon LGR5-H2B-GFP, healthy human, and murine biopsies were compared by mRNA fluorescent in situ hybridization (FISH). To model CRC, adenomatous polyposis coli (APC) mutation was induced by CRISPR/Cas9 editing in porcine LGR5-H2B-GFP colonoids. Crypt-base, green fluorescent protein (GFP) expressing cells co-localized with ISC biomarkers. LGR5-H2B-GFPhi cells had significantly higher LGR5 expression (p < .01) and enteroid forming efficiency (p < .0001) compared with LGR5-H2B-GFPmed/lo/neg cells. Using FISH, similar LGR5, OLFM4, HOPX, LYZ, and SOX9 expression was identified between human and LGR5-H2B-GFP pig crypt-base cells. LGR5-H2B-GFP/APCnull colonoids had cystic growth in WNT/R-spondin-depleted media and significantly upregulated WNT/ß-catenin target gene expression (p < .05). LGR5+ ISCs are reproducibly isolated in LGR5-H2B-GFP pigs and used to model CRC in an organoid platform. The known anatomical and physiologic similarities between pig and human, and those shown by crypt-base FISH, underscore the significance of this novel LGR5-H2B-GFP pig to translational ISC research.
Assuntos
Intestinos , Humanos , Suínos , Animais , Camundongos , Hibridização in Situ Fluorescente , Células-Tronco , Íleo , Colo , Proteínas de Fluorescência Verde/genética , Receptores Acoplados a Proteínas G/genéticaRESUMO
BACKGROUND: Equine intestinal epithelial stem cells (ISCs) serve as potential targets to treat horses with severe intestinal injury. The ability to isolate and store ISCs from intestinal biopsies creates an opportunity for both in vitro experiments to study ISC dynamics in a variety of intestinal diseases, and, in the future, utilize these cells as a possible therapy. If biopsies could be successfully stored prior to processing for ISCs, this would increase the availability of sample repositories for future experimental and therapeutic use. However, delayed culture of equine ISCs following prolonged sample storage has not been described. The objective of this study was to describe the isolation and culture of equine ISCs following delayed tissue storage. Small intestinal full thickness biopsies were collected post euthanasia. Fresh tissue was immediately processed or stored at 4 °C for 24, 48 and 72 h (H) before processing. Intestinal stem cells (crypts) were dissociated and cultured. Size, growth efficiency and proliferation potential were compared between resultant enteroids ("mini-guts") derived from each storage timepoint. In a separate study, growth efficiency of cryopreserved crypts was compared to cryopreserved enteroid fragments to investigate prolonged storage techniques. RESULTS: Intestinal crypts were successfully isolated and cultured from all timepoints. At 72H post initial collection, the intestine was friable with epithelial sloughing; resultant dissociation yielded more partial crypts. Enteroids grown from crypts isolated at 72H were smaller with less proliferative potential (bud units, (median 6.5, 3.75-14.25)) than control (median 25, 15-28, p < 0.0001). No statistical differences were noted from tissues stored for 24H compared to control. Following cryopreservation, growth efficiency improved when cells were stored as enteroid fragments (median 81.6%, 66.2-109) compared to crypts (median 21.2%, 20-21.5, p = 0.01). The main limitations included a small sample size and lack of additional functional assays on enteroids. CONCLUSIONS: Equine ISCs can be isolated and cultured after prolonged tissue storage. Resultant enteroids had minimal differences even after 24-48H of whole tissue storage. This suggests that ISCs could be isolated for several days from samples properly stored after procedures, including surgery or necropsy, and used to create ISC repositories for study or therapy of equine intestinal diseases.
Assuntos
Criopreservação , Células Epiteliais , Cavalos , Intestinos , Células-Tronco , Animais , Criopreservação/veterinária , Células Epiteliais/citologia , Intestinos/citologia , Células-Tronco/citologia , Fatores de Tempo , Células Cultivadas , Enteropatias/terapia , Enteropatias/veterináriaRESUMO
Intestinal ischemia is a life-threatening emergency with mortality rates of 50%-80% due to epithelial cell death and resultant barrier loss. Loss of the epithelial barrier occurs in conditions including intestinal volvulus and neonatal necrotizing enterocolitis. Survival depends on effective epithelial repair; crypt-based intestinal epithelial stem cells (ISCs) are the source of epithelial renewal in homeostasis and after injury. Two ISC populations have been described: 1) active ISC [aISC; highly proliferative; leucine-rich-repeat-containing G protein-coupled receptor 5 (LGR5+)-positive or sex-determining region Y-box 9 -antigen Ki67-positive (SOX9+Ki67+)] and 2) reserve ISC [rISC; less proliferative; homeodomain-only protein X positive (HOPX+)]. The contributions of these ISCs have been evaluated both in vivo and in vitro using a porcine model of mesenteric vascular occlusion to understand mechanisms that modulate ISC recovery responses following ischemic injury. In our previously published work, we observed that rISC conversion to an activated state was associated with decreased HOPX expression during in vitro recovery. In the present study, we wanted to evaluate the direct role of HOPX on cellular proliferation during recovery after injury. Our data demonstrated that during early in vivo recovery, injury-resistant HOPX+ cells maintain quiescence. Subsequent early regeneration within the intestinal crypt occurs around 2 days after injury, a period in which HOPX expression decreased. When HOPX was silenced in vitro, cellular proliferation of injured cells was promoted during recovery. This suggests that HOPX may serve a functional role in ISC-mediated regeneration after injury and could be a target to control ISC proliferation.NEW & NOTEWORTHY This paper supports that rISCs are resistant to ischemic injury and likely an important source of cellular renewal following near-complete epithelial loss. Furthermore, we have evidence that HOPX controls ISC activity state and may be a critical signaling pathway during ISC-mediated repair. Finally, we use multiple novel methods to evaluate ISCs in a translationally relevant large animal model of severe intestinal injury and provide evidence for the potential role of rISCs as therapeutic targets.
Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Mucosa Intestinal/metabolismo , Isquemia Mesentérica/metabolismo , Reepitelização , Células-Tronco/metabolismo , Animais , Modelos Animais de Doenças , Células Epiteliais/patologia , Feminino , Proteínas de Homeodomínio/genética , Mucosa Intestinal/patologia , Masculino , Isquemia Mesentérica/genética , Isquemia Mesentérica/patologia , Fenótipo , Índice de Gravidade de Doença , Células-Tronco/patologia , Sus scrofa , Técnicas de Cultura de TecidosRESUMO
Small intestinal organoids, or enteroids, represent a valuable model to study host-pathogen interactions at the intestinal epithelial surface. Much research has been done on murine and human enteroids, however only a handful studies evaluated the development of enteroids in other species. Porcine enteroid cultures have been described, but little is known about their functional responses to specific pathogens or their associated virulence factors. Here, we report that porcine enteroids respond in a similar manner as in vivo gut tissues to enterotoxins derived from enterotoxigenic Escherichia coli, an enteric pathogen causing postweaning diarrhoea in piglets. Upon enterotoxin stimulation, these enteroids not only display a dysregulated electrolyte and water balance as shown by their swelling, but also secrete inflammation markers. Porcine enteroids grown as a 2D-monolayer supported the adhesion of an F4+ ETEC strain. Hence, these enteroids closely mimic in vivo intestinal epithelial responses to gut pathogens and are a promising model to study host-pathogen interactions in the pig gut. Insights obtained with this model might accelerate the design of veterinary therapeutics aimed at improving gut health.
Assuntos
Escherichia coli Enterotoxigênica/fisiologia , Enterotoxinas/toxicidade , Infecções por Escherichia coli/veterinária , Intestino Delgado/fisiopatologia , Organoides/fisiopatologia , Doenças dos Suínos/fisiopatologia , Animais , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/fisiopatologia , Interações Hospedeiro-Patógeno , Intestino Delgado/microbiologia , Organoides/microbiologia , Sus scrofa , Suínos , Doenças dos Suínos/microbiologiaRESUMO
OBJECTIVE: To determine the prognostic value of (1) colonic venous lactate or peripheral lactate values obtained before and after manual correction of a large colon volvulus and (2) a combination of variables including pelvic flexure biopsy. STUDY DESIGN: Prospective clinical study. ANIMALS: Forty adult horses in which large colon volvulus was diagnosed intraoperatively. METHODS: Colonic venous, peripheral venous, and arterial blood samples were collected to measure lactate values before and after manual correction. Mucosal biopsy samples were obtained in cases that underwent enterotomy or colonic resection and anastomosis. Interstitium to crypt (I:C) ratio and hemorrhage scores were measured. Optimal cutoff values were determined by receiver operator curve analysis, and associations between variables and short-term outcome were determined by univariable regression. Short-term survival was defined as horses being discharged from the hospital. P ≤ .05 was considered significant. RESULTS: No association was found between colonic venous lactate values before (P = .011) or after (P = .201) manual correction of large colon volvulus and determination of short-term outcome. Peripheral venous lactate at admission ≥3.2 mmol/L and after manual correction ≥5 mmol/L, arterial lactate postmanual correction ≥3.53 mmol/L, and histomorphometric measurements of mucosal hemorrhage ≥3 and I:C ratio > 1 were associated with poor short-term outcome. CONCLUSION: Peripheral lactate values, histomorphometric measures of I:C ratio, and hemorrhage score provided prognostic information that could help guide recommendations made to owners. CLINICAL SIGNIFICANCE: Peripheral lactate values after manual correction provide important intraoperative diagnostic information to assist in predicting case outcome in the operative and immediately postoperative period.
Assuntos
Colo/patologia , Doenças dos Cavalos/sangue , Doenças dos Cavalos/diagnóstico , Volvo Intestinal/veterinária , Lactatos/sangue , Animais , Biópsia/veterinária , Gasometria/veterinária , Feminino , Hemorragia/patologia , Doenças dos Cavalos/terapia , Cavalos , Volvo Intestinal/sangue , Volvo Intestinal/diagnóstico , Volvo Intestinal/terapia , Masculino , Prognóstico , Estudos ProspectivosRESUMO
Intestinal ischemia is an abdominal emergency with a mortality rate >50%, leading to epithelial barrier loss and subsequent sepsis. Epithelial renewal and repair after injury depend on intestinal epithelial stem cells (ISC) that reside within the crypts of Lieberkühn. Two ISC populations critical to epithelial repair have been described: 1) active ISC (aISC; highly proliferative; leucine-rich-repeat-containing G protein-coupled receptor 5 positive, sex determining region Y-box 9 positive) and 2) reserve ISC [rISC; less proliferative; homeodomain only protein X (Hopx)+]. Yorkshire crossbred pigs (8-10 wk old) were subjected to 1-4 h of ischemia and 1 h of reperfusion or recovery by reversible mesenteric vascular occlusion. This study was designed to evaluate whether ISC-expressing biomarkers of aISCs or rISCs show differential resistance to ischemic injury and different contributions to the subsequent repair and regenerative responses. Our data demonstrate that, following 3-4 h ischemic injury, aISC undergo apoptosis, whereas rISC are preserved. Furthermore, these rISC are retained ex vivo in spheroids in which cell populations are enriched in the rISC biomarker Hopx. These cells appear to go on to provide a proliferative pool of cells during the recovery period. Taken together, these data indicate that Hopx+ cells are resistant to injury and are the likely source of epithelial renewal following prolonged ischemic injury. It is therefore possible that targeting reserve stem cells will lead to new therapies for patients with severe intestinal injury. NEW & NOTEWORTHY The population of reserve less-proliferative intestinal epithelial stem cells appears resistant to injury despite severe epithelial cell loss, including that of the active stem cell population, which results from prolonged mesenteric ischemia. These cells can change to an activated state and are likely indispensable to regenerative processes. Reserve stem cell targeted therapies may improve treatment and outcome of patients with ischemic disease.
Assuntos
Autorrenovação Celular/fisiologia , Proteínas de Homeodomínio/metabolismo , Mucosa Intestinal , Isquemia/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Apoptose , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Receptores Acoplados a Proteínas G/metabolismo , SuínosRESUMO
The Centers for Disease Control (CDC) declares exercise to be one of the most important activities one can do to improve health. The benefits of exercise are well documented and include both physiologic and psychological health. Given the current landscape of wellness issues in veterinary medical education, it is necessary that students engage in exercise activities to manage stress and increase overall health. Therefore, to develop targeted interventions with the greatest likelihood for success, it is first necessary to understand what motivates veterinary medical students to exercise given their unique situational and environmental factors. This study is the first to explore this issue systematically in veterinary medical education, thus it is the authors' hope that the findings from this research will help identify exercise-related wellness interventions that could be implemented in veterinary medical schools.
Assuntos
Exercício Físico , Motivação , Estudantes de Medicina/psicologia , Adulto , Animais , Educação em Veterinária , Feminino , Humanos , Masculino , North Carolina , Inquéritos e Questionários , Adulto JovemRESUMO
The Centers for Disease Control (CDC) declares exercise to be one of the most important activities one can do to improve health. The benefits of exercise are well documented and include both physiologic and psychological health. Given the current landscape of wellness issues in veterinary medical education, it is necessary that students engage in exercise activities to manage stress and increase overall health. Therefore, to develop targeted interventions with the greatest likelihood for success, it is first necessary to understand what motivates veterinary medical students to exercise given their unique situational and environmental factors. This study is the first to explore this issue systematically in veterinary medical education, thus it is the authors' hope that the findings from this research will help identify exercise-related wellness interventions that could be implemented in veterinary medical schools.
RESUMO
Esophageal injury is a risk factor for diseases such as Barrett's esophagus (BE) and esophageal adenocarcinoma. To improve understanding of signaling pathways associated with both normal and abnormal repair, animal models are needed. Traditional rodent models of esophageal repair are limited by the absence of esophageal submucosal glands (ESMGs), which are present in the human esophagus. Previously, we identified acinar ductal metaplasia in human ESMGs in association with both esophageal injury and cancer. In addition, the SOX9 transcription factor has been associated with generation of columnar epithelium and the pathogenesis of BE and is present in ESMGs. To test our hypothesis that ESMGs activate after esophageal injury with an increase in proliferation, generation of a ductal phenotype, and expression of SOX9, we developed a porcine model of esophageal injury and repair using radiofrequency ablation (RFA). The porcine esophagus contains ESMGs, and RFA produces a consistent and reproducible mucosal injury in the esophagus. Here we present a temporal assessment of this model of esophageal repair. Porcine esophagus was evaluated at 0, 6, 18, 24, 48, and 72 h and 5 and 7 days following RFA and compared with control uninjured esophagus. Following RFA, ESMGs demonstrated an increase in ductal phenotype, echoing our prior studies in humans. Proliferation increased in both squamous epithelium and ESMGs postinjury with a prominent population of SOX9-positive cells in ESMGs postinjury. This model promises to be useful in future experiments evaluating mechanisms of esophageal repair.NEW & NOTEWORTHY A novel porcine model of injury and repair using radiofrequency ablation has been developed, allowing for reproducible injury to the esophagus to study repair in an animal model with esophageal submucosal glands, a key anatomical feature and missing in rodent models but possibly harboring progenitor cells. There is a strong translational component to this porcine model given the anatomical and physiological similarities between pigs and humans.
Assuntos
Proliferação de Células/fisiologia , Esôfago/citologia , Esôfago/lesões , Transporte Ativo do Núcleo Celular , Animais , Doenças do Esôfago/patologia , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Coloração e Rotulagem , SuínosRESUMO
Research in the field of ischemia-reperfusion injury continues to be plagued by the inability to translate research findings to clinically useful therapies. This may in part relate to the complexity of disease processes that result in intestinal ischemia but may also result from inappropriate research model selection. Research animal models have been integral to the study of ischemia-reperfusion-induced intestinal injury. However, the clinical conditions that compromise intestinal blood flow in clinical patients ranges widely from primary intestinal disease to processes secondary to distant organ failure and generalized systemic disease. Thus models that closely resemble human pathology in clinical conditions as disparate as volvulus, shock, and necrotizing enterocolitis are likely to give the greatest opportunity to understand mechanisms of ischemia that may ultimately translate to patient care. Furthermore, conditions that result in varying levels of ischemia may be further complicated by the reperfusion of blood to tissues that, in some cases, further exacerbates injury. This review assesses animal models of ischemia-reperfusion injury as well as the knowledge that has been derived from each to aid selection of appropriate research models. In addition, a discussion of the future of intestinal ischemia-reperfusion research is provided to place some context on the areas likely to provide the greatest benefit from continued research of ischemia-reperfusion injury.
Assuntos
Intestinos/lesões , Isquemia/patologia , Traumatismo por Reperfusão/patologia , Pesquisa Translacional Biomédica , Animais , Modelos Animais de Doenças , Humanos , Intestinos/patologia , Isquemia/complicações , Oxigênio/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo , Pesquisa Translacional Biomédica/métodosRESUMO
Biomarkers are typically proteins, enzymes, or other molecular changes that are elevated or decreased in body fluids during the course of inflammation or disease. Biomarkers pose an extremely attractive tool for establishing diagnoses and prognoses of equine gastrointestinal colic, one of the most prevalent causes of morbidity and mortality in horses. This topic has received increasing attention because early diagnosis of some forms of severe colic, such as intestinal ischemia, would create opportunities for rapid interventions that would likely improve case outcomes. This review explores biomarkers currently used in equine medicine for colic, including acute phase proteins, proinflammatory cytokines, markers of endotoxemia, and tissue injury metabolites. To date, no single biomarker has been identified that is perfectly sensitive and specific for intestinal ischemia; however, L-lactate has been proven to be a very functional and highly utilized diagnostic tool. However, further exploration of other biomarkers discussed in this review may provide the key to accelerated identification, intervention, and better outcomes for horses suffering from severe colic.
RESUMO
OBJECTIVE: To objectively measure the current demographic makeup of the American College of Veterinary Surgeons (ACVS) diplomates and to develop a survey tool to be used as a metric to measure future changes in the ACVS demographic profile. SAMPLE: 737 ACVS diplomates. METHODS: A 14-item electronic survey was sent to 2,199 ACVS diplomates between August 25 and September 9, 2021, via email. Survey items included demographic information as well as perceptions about the ACVS and diversity, equity, and inclusion (DEI). Responses were quantitatively and qualitatively analyzed. RESULTS: The survey response rate was 34% (737/2,199). The median age category among respondents was 45 to 54. The median years in practice as a diplomate was 11 to 15. The majority of respondents identified as white/Caucasian and heterosexual, with male and female respondents being similarly represented. Most respondents identified English as their first language. Few considered themselves first-generation college graduates or identified as disabled. Many respondents considered DEI to be an important initiative to promote in the ACVS. CLINICAL RELEVANCE: Findings suggested that the majority of ACVS respondents are supportive of DEI efforts. This study also serves as an objective analysis that can be reassessed in the future to determine the success of such initiatives.
Assuntos
Diversidade, Equidade, Inclusão , Cirurgiões , Masculino , Feminino , Estados Unidos , Animais , Humanos , Inquéritos e Questionários , UniversidadesRESUMO
BACKGROUND: Intestinal epithelial stem cells (ISC) are responsible for epithelial regeneration and are critical to the intestine's ability to regain barrier function following injury. Evaluating ISC biomarker expression in cases of small intestinal strangulation (SIS) may provide insight into clinical progression. OBJECTIVES: Intestinal resection margins from cases of SIS were evaluated to determine if (1) evidence of injury could be identified using histomorphometry, (2) ISC biomarker expression was decreased in the proximal resection margin compared to control and distal resection margin, and (3) the ISC biomarker expression was associated with the number of preoperative risk factors negatively related to outcome, post-operative complications, or case outcome. STUDY DESIGN: Retrospective cohort study. METHODS: Intestinal samples were obtained intraoperatively from resection margins of adult horses with SIS and horses euthanised for reasons unrelated to colic. Preoperative risk factors negatively related to outcome, post-operative complications, and case outcome were obtained from medical records. Horses were grouped as euthanised intraoperatively, postoperatively, or survived to discharge. Histomorphometry and immunofluorescence were performed to evaluate tissue architecture and ISC and progenitor cell number. Groups were compared using one-way ANOVA. Associations between biomarker expression and the number of preoperative risk factors and post-operative complications negatively related to outcome were determined using linear regression modelling. RESULTS: Thirty-six cases of SIS were evaluated. Ki67+ cell counts were decreased in the proximal (mean = 15.45 cells; 95% CI = 10.27-20.63; SD = 4.17; p = 0.02) and distal resection margins (mean = 15.05; 95% CI = 8.46-21.64; SD = 4.141; p = 0.03) in horses euthanised postoperatively compared to control (mean = 23.62 cells; 95% CI = 19.42-27.83; SD = 5.883). In the distal resection margin, an increase in SOX9+ Ki67+ cells were associated with a decrease in the total number of preoperative risk factors negatively related to outcome (95% CI = 0.236-1.123; p = 0.008, SE = 0.1393). MAIN LIMITATIONS: Small population size. CONCLUSIONS: Proliferating cell and ISC numbers may be associated with case outcome.
RESUMO
For both human and veterinary patients, non-infectious intestinal disease is a major cause of morbidity and mortality. To improve treatment of intestinal disease, large animal models are increasingly recognized as critical tools to translate the basic science discoveries made in rodent models into clinical application. Large animal intestinal models, particularly porcine, more closely resemble human anatomy, physiology, and disease pathogenesis; these features make them critical to the pre-clinical study of intestinal disease treatments. Previously, large animal model use has been somewhat precluded by the lack of genetically altered large animals to mechanistically investigate non-infectious intestinal diseases such as colorectal cancer, cystic fibrosis, and ischemia-reperfusion injury. However, recent advances and increased availability of gene editing technologies has led to both novel use of large animal models in clinically relevant intestinal disease research and improved testing of potential therapeutics for these diseases.
RESUMO
Successful intestinal transplantation is currently hindered by graft injury that occurs during procurement and storage, which contributes to postoperative sepsis and allograft rejection. Improved graft preservation may expand transplantable graft numbers and enhance posttransplant outcomes. Superior transplant outcomes have recently been demonstrated in clinical trials using machine perfusion to preserve the liver. We hypothesized that machine perfusion preservation of intestinal allografts could be achieved and allow for transplantation in a porcine model. Methods: Using a translational porcine model, we developed a device for intestinal perfusion. Intestinal samples were collected at the time of organ procurement, and after 6 h of machine perfusion for gross and histologic evaluation, hourly chemistry panels were performed on the perfusate and were used for protocol optimization. Following transplantation, porcine recipient physical activity, systemic blood parameters, and vital signs were monitored for 2 d before sacrifice. Results: In initial protocol development (generation 1, n = 8 grafts), multiple metabolic, electrolyte, and acid-base derangements were measured. These factors coincided with graft and mesenteric edema and luminal hemorrhage and were addressed with the addition of dialysis. In the subsequent protocol (generation 2, n = 9 grafts), differential jejunum and ileum perfusion were observed resulting in gross evidence of ileal ischemia. Modifications in vasodilating medications enhanced ileal perfusion (generation 3, n = 4 grafts). We report successful transplantation of 2 porcine intestinal allografts after machine perfusion with postoperative clinical and gross evidence of normal gut function. Conclusions: This study reports development and optimization of machine perfusion preservation of small intestine and successful transplantation of intestinal allografts in a porcine model.
RESUMO
OBJECTIVE: To determine the degree of histomorphometric damage in dorsal colon and pelvic flexure biopsy specimens (DCBSs and PFBSs, respectively) obtained from horses with large colon volvulus (LCV) and assess the accuracy of predicting short-term outcome for those horses on the basis of DCBS or PFBS characteristics. ANIMALS: 18 horses with ≥ 360° LCV that underwent large colon resection. PROCEDURES: During surgery, biopsy specimens from the dorsal colon resection site and the pelvic flexure (when available) were collected from each horse. Interstitial-to-crypt (I:C) ratio (ratio of the lamina propria space occupied by the interstitium to that occupied by crypts), hemorrhage within the lamina propria (mucosal hemorrhage score [MHS] from 0 to 4), and percentage losses of glandular and luminal epithelium were determined in paired biopsy specimens and compared to determine optimal cutoff values for calculating the accuracy of DCBS and PFBS characteristics to predict short-term outcome (survival or nonsurvival after recovery from surgery). RESULTS: Paired biopsy specimens were obtained from 17 of the 18 horses. The I:C ratio and percentage glandular epithelial loss differed between DCBSs and PFBSs. For DCBSs, an I:C ratio ≥ 0.9 and MHS ≥ 3 each predicted patient nonsurvival with 77.8% accuracy. For PFBSs, an I:C ratio ≥ I and MHS ≥ 3 predicted patient nonsurvival with 70.6% and 82.4% accuracy, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Although different, histomorphometric measurements for either DCBSs or PFBSs could be used to accurately predict short-term outcome for horses with LCV that underwent large colon resection, and arguably PFBSs are easier to collect.