Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 24(12): 2819-29, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23892486

RESUMO

The aim of this work was to evaluate semi-synthetic biopolymers based on chitosan (CH) and gelatin (G) as potential in vitro carrier substrata for human limbal epithelial cells (hLECs). To that end, human corneal epithelial cells (HCE) were cultured onto different CH-G membranes. None of the polymers were cytotoxic and cell proliferation was higher when CH was functionalized with G. Expression levels of corneal epithelial markers (K3, K12, E-caherin, desmoplakin, and zonula occludens (ZO)-1) were better maintained in HCE cells grown on CH-G 20:80 membranes than other proportions. Consequently, CH-G 20:80 was chosen for the subsequent expansion of hLECs. Cells derived from limbal explants were successfully expanded on CH-G 20:80 membranes using a culture medium lacking components of non-human animal origin. The expression levels found for corneal (K3 and K12) and limbal epithelial stem cells (K15) specific markers were similar to or higher than those found in limbal cells grown onto the control substratum. Our results demonstrate that CH-G 20:80 membranes are suitable for the expansion and maintenance of stem cells derived from the limbal niche. These results strongly support the use of polymers as alternative substrata for the transplantation of cultivated limbal cells onto the ocular surface.


Assuntos
Biopolímeros/química , Quitosana/química , Epitélio Corneano/citologia , Gelatina/química , Células-Tronco/citologia , Técnicas de Cultura de Células , Proliferação de Células , Sobrevivência Celular , Córnea/patologia , Meios de Cultura/química , Humanos , Teste de Materiais , Polímeros/química , Alicerces Teciduais
2.
ACS Nano ; 15(7): 11263-11275, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34128638

RESUMO

Protein pores recently enabled a breakthrough in bioanalytics by making it possible to sequence individual DNA and RNA strands during their translocation through the lumen of the pore. Despite this success and the overall promise of nanopore-based single-molecule analytics, protein pores have not yet reached their full potential for the analysis and characterization of globular biomolecules such as natively folded proteins. One reason is that the diameters of available protein pores are too small for accommodating the translocation of most folded globular proteins through their lumen. The work presented here provides a step toward overcoming this limitation by programmed self-assembly of α-helical pore-forming peptides with covalently attached single-stranded DNA (ssDNA). Specifically, hybridization of the peptide ceratotoxin A (CtxA) with N-terminally attached ssDNA to a complementary DNA template strand with 4, 8, or 12 hybridization sites made it possible to trigger the assembly of pores with various diameters ranging from approximately 0.5 to 4 nm. Hybridization of additional DNA strands to these assemblies achieved extended functionality in a modular fashion without the need for modifying the amino acid sequence of the peptides. For instance, functionalization of these semisynthetic biological nanopores with DNA-cholesterol anchors increased their affinity to lipid membranes compared to pores formed by native CtxA, while charged transmembrane segments prolonged their open-state lifetime. Assembly of these hybrid DNA-peptides by a template increased their cytotoxic activity and made it possible to kill cancer cells at 20-fold lower total peptide concentrations than nontemplated CtxA.


Assuntos
Nanoporos , Nanotecnologia , DNA/química , Peptídeos , DNA de Cadeia Simples
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA