Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Physiol ; 600(24): 5311-5332, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36271640

RESUMO

The ability to discriminate competing external stimuli and initiate contextually appropriate behaviours is a key brain function. Neurons in the deep superior colliculus (dSC) integrate multisensory inputs and activate descending projections to premotor pathways responsible for orienting, attention and defence, behaviours which involve adjustments to respiratory and cardiovascular parameters. However, the neural pathways that subserve the physiological components of orienting are poorly understood. We report that orienting responses to optogenetic dSC stimulation are accompanied by short-latency autonomic, respiratory and electroencephalographic effects in awake rats, closely mimicking those evoked by naturalistic alerting stimuli. Physiological responses were not accompanied by detectable aversion or fear, and persisted under urethane anaesthesia, indicating independence from emotional stress. Anterograde and trans-synaptic viral tracing identified a monosynaptic pathway that links the dSC to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA), a key hub for the coordination of orienting and locomotor behaviours. In urethane-anaesthetized animals, sympathoexcitatory and cardiovascular, but not respiratory, responses to dSC stimulation were replicated by optogenetic stimulation of the dSC-GiA terminals, suggesting a likely role for this pathway in mediating the autonomic components of dSC-mediated responses. Similarly, extracellular recordings from putative GiA sympathetic premotor neurons confirmed short-latency excitatory inputs from the dSC. This pathway represents a likely substrate for autonomic components of orienting responses that are mediated by dSC neurons and suggests a mechanism through which physiological and motor components of orienting behaviours may be integrated without the involvement of higher centres that mediate affective components of defensive responses. KEY POINTS: Neurons in the deep superior colliculus (dSC) integrate multimodal sensory signals to elicit context-dependent innate behaviours that are accompanied by stereotypical cardiovascular and respiratory activities. The pathways responsible for mediating the physiological components of colliculus-mediated orienting behaviours are unknown. We show that optogenetic dSC stimulation evokes transient orienting, respiratory and autonomic effects in awake rats which persist under urethane anaesthesia. Anterograde tracing from the dSC identified projections to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA). Stimulation of this pathway recapitulated autonomic effects evoked by stimulation of dSC neurons. Electrophysiological recordings from putative GiA sympathetic premotor neurons confirmed short latency excitatory input from dSC neurons. This disynaptic dSC-GiA-spinal sympathoexcitatory pathway may underlie autonomic adjustments to salient environmental cues independent of input from higher centres.


Assuntos
Formação Reticular , Colículos Superiores , Animais , Ratos , Colículos Superiores/fisiologia , Formação Reticular/fisiologia , Sistema Nervoso Autônomo/fisiologia , Neurônios/fisiologia , Vias Neurais/fisiologia , Uretana/farmacologia
2.
Neuroendocrinology ; 112(12): 1200-1213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35654013

RESUMO

INTRODUCTION: Angiotensin (Ang) II signalling in the hypothalamic paraventricular nucleus (PVN) via Ang type-1a receptors (AT1R) regulates vasopressin release and sympathetic nerve activity - two effectors of blood pressure regulation. We determined the cellular expression and function of AT1R in the PVN of a rodent model of polycystic kidney disease (PKD), the Lewis polycystic kidney (LPK) rat, to evaluate its contribution to blood pressure regulation and augmented vasopressin release in PKD. METHODS: PVN AT1R gene expression was quantified with fluorescent in situ hybridization in LPK and control rats. PVN AT1R function was assessed with pharmacology under urethane anaesthesia in LPK and control rats instrumented to record arterial pressure and sympathetic nerve activity. RESULTS: AT1R gene expression was upregulated in the PVN, particularly in corticotrophin-releasing hormone neurons, of LPK versus control rats. PVN microinjection of Ang II produced larger increases in systolic blood pressure in LPK versus control rats (36 ± 5 vs. 17 ± 2 mm Hg; p < 0.01). Unexpectedly, Ang II produced regionally heterogeneous sympathoinhibition (renal: -33%; splanchnic: -12%; lumbar: no change) in LPK and no change in controls. PVN pre-treatment with losartan, a competitive AT1R antagonist, blocked the Ang II-mediated renal sympathoinhibition and attenuated the pressor response observed in LPK rats. The Ang II pressor effect was also blocked by systemic OPC-21268, a competitive V1A receptor antagonist, but unaffected by hexamethonium, a sympathetic ganglionic blocker. DISCUSSION/CONCLUSION: Collectively, our data suggest that upregulated AT1R expression in PVN sensitizes neuroendocrine release of vasopressin in the LPK, identifying a central mechanism for the elevated vasopressin levels present in PKD.


Assuntos
Núcleo Hipotalâmico Paraventricular , Doenças Renais Policísticas , Ratos , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Pressão Sanguínea , Roedores/genética , Roedores/metabolismo , Hibridização in Situ Fluorescente , Ratos Endogâmicos Lew , Vasopressinas/metabolismo , Sistema Nervoso Simpático/metabolismo , Angiotensina II , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Doenças Renais Policísticas/metabolismo , Rim
3.
J Physiol ; 597(13): 3407-3423, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31077360

RESUMO

KEY POINTS: Spinally-projecting neurons of the rostral ventrolateral medulla (RVLM) determine sympathetic outflow to different territories of the body. Previous studies suggest the existence of RVLM neurons with distinct functional classes, such as neurons that target sympathetic nerves bound for functionally-similar tissue types (e.g. muscle vasculature). The existence of RVLM neurons with more general actions had not been critically tested. Using viral tracing, we show that a significant minority of RVLM neurons send axon collaterals to disparate spinal segments (T2 and T10 ). Furthermore, optogenetic activation of sympathetic premotor neurons projecting to lumbar spinal segments also produced activation of sympathetic nerves from rostral spinal segments that innervate functionally diverse tissues (heart and forelimb muscle). These findings suggest the existence of individual RVLM neurons for which the axons branch to drive sympathetic preganglionic neurons of more than one functional class and may be able to produce global changes in sympathetic activity. ABSTRACT: We investigate the extent of spinal axon collateralization of rat rostral ventrolateral medulla (RVLM) sympathetic premotor neurons and its functional consequences. In anatomical tracing experiments, two recombinant herpes viral vectors with retrograde tropism and expressing different fluorophores were injected into the intermediolateral column at upper thoracic and lower thoracic levels. Histological analysis revealed that ∼21% of RVLM bulbospinal neurons were retrogradely labelled by both vectors, indicating substantial axonal collateralization to disparate spinal segments. In functional experiments, another virus with retrograde tropism, a canine adenovirus expressing Cre recombinase, was injected into the left intermediolateral horn around the thoracolumbar junction, whereas a Cre-dependent viral vector encoding Channelrhodopsin2 under LoxP control was injected into the ipsilateral RVLM. In subsequent terminal experiments, blue laser light (473 nm × 20 ms pulses at 10 mW) was used to activate RVLM neurons that had been transduced by both vectors. Stimulus-locked activation, at appropriate latencies, was recorded in the following pairs of sympathetic nerves: forelimb and hindlimb muscle sympathetic fibres, as well as cardiac and either hindlimb muscle or lumbar sympathetic nerves. The latter result demonstrates that axon collaterals of lumbar-projecting RVLM neurons project to, and excite, both functionally similar (forelimb and hindlimb muscle) and functionally dissimilar (lumbar and cardiac) preganglionic neurons. Taken together, these findings show that the axons of a significant proportion of RVLM neurons collateralise widely within the spinal cord, and that they may excite preganglionic neurons of more than one functional class.


Assuntos
Axônios/fisiologia , Neurônios/fisiologia , Medula Espinal/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Fibras Autônomas Pré-Ganglionares/fisiologia , Membro Posterior/fisiologia , Interneurônios/fisiologia , Masculino , Bulbo/fisiologia , Músculos/fisiologia , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley
4.
J Neurosci ; 37(27): 6558-6574, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28576943

RESUMO

Expression of the large extracellular glycan, polysialic acid (polySia), is restricted in the adult, to brain regions exhibiting high levels of plasticity or remodeling, including the hippocampus, prefrontal cortex, and the nucleus of the solitary tract (NTS). The NTS, located in the dorsal brainstem, receives constant viscerosensory afferent traffic as well as input from central regions controlling sympathetic nerve activity, respiration, gastrointestinal functions, hormonal release, and behavior. Our aims were to determine the ultrastructural location of polySia in the NTS and the functional effects of enzymatic removal of polySia, both in vitro and in vivo polySia immunoreactivity was found throughout the adult rat NTS. Electron microscopy demonstrated polySia at sites that influence neurotransmission: the extracellular space, fine astrocytic processes, and neuronal terminals. Removing polySia from the NTS had functional consequences. Whole-cell electrophysiological recordings revealed altered intrinsic membrane properties, enhancing voltage-gated K+ currents and increasing intracellular Ca2+ Viscerosensory afferent processing was also disrupted, dampening low-frequency excitatory input and potentiating high-frequency sustained currents at second-order neurons. Removal of polySia in the NTS of anesthetized rats increased sympathetic nerve activity, whereas functionally related enzymes that do not alter polySia expression had little effect. These data indicate that polySia is required for the normal transmission of information through the NTS and that changes in its expression alter sympathetic outflow. polySia is abundant in multiple but discrete brain regions, including sensory nuclei, in both the adult rat and human, where it may regulate neuronal function by mechanisms identified here.SIGNIFICANCE STATEMENT All cells are coated in glycans (sugars) existing predominantly as glycolipids, proteoglycans, or glycoproteins formed by the most complex form of posttranslational modification, glycosylation. How these glycans influence brain function is only now beginning to be elucidated. The adult nucleus of the solitary tract has abundant polysialic acid (polySia) and is a major site of integration, receiving viscerosensory information which controls critical homeostatic functions. Our data reveal that polySia is a determinant of neuronal behavior and excitatory transmission in the nucleus of the solitary tract, regulating sympathetic nerve activity. polySia is abundantly expressed at distinct brain sites in adult, including major sensory nuclei, suggesting that sensory transmission may also be influenced via mechanisms described here. These findings hint at the importance of elucidating how other glycans influence neural function.


Assuntos
Vias Aferentes/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Ácidos Siálicos/metabolismo , Núcleo Solitário/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
5.
Proteomics ; 16(22): 2894-2910, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27588558

RESUMO

Caffeine is a psychostimulant commonly consumed with high levels of sugar. The increased availability of highly caffeinated, high sugar energy drinks could put some consumers at risk of being exposed to high doses of caffeine and sugar. Notably, research that has examined the consequences of this combination is limited. Here, we explored the effect of chronic exposure to caffeine and/or sugar on behavior and protein levels in the orbitofrontal cortex (OFC) of rats. The OFC brain region has been implicated in neuropsychiatric conditions, including obesity and addiction behaviors. Adult male Sprague-Dawley rats were treated for 26 days with control, caffeine (0.6 g/L), 10% sugar, or combination of both. Locomotor behavior was measured on the first and last day of treatment, then 1 week after treatment. Two hours following final behavioral testing, brains were rapidly removed and prepared for proteomic analysis of the OFC. Label-free quantitative shotgun analysis revealed that 21, 12, and 23% of proteins identified in the OFC were differentially expressed by sugar and/or caffeine. The results demonstrate that the intake of high levels of sugar and/or low to moderate levels of caffeine has different behavioral consequences. Moreover, each treatment results in a unique proteomic profile with different implications for neural health.


Assuntos
Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Carboidratos da Dieta/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Proteoma/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Bebidas/efeitos adversos , Cafeína/efeitos adversos , Estimulantes do Sistema Nervoso Central/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Locomoção/efeitos dos fármacos , Masculino , Córtex Pré-Frontal/fisiologia , Proteoma/análise , Proteômica , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
6.
Proteomics ; 16(4): 657-73, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26621205

RESUMO

In most Westernized societies, there has been an alarming increase in the consumption of sugar-sweetened drinks. For many adults these drinks represent a substantial proportion of their total daily caloric intake. Here we investigated whether extended exposure to sugar changes behavior and protein expression in the orbitofrontal cortex (OFC). Male adult Sprague-Dawley rats (n = 8 per group) were treated for 26 days with either water or a 10% sucrose solution. Locomotor behavior was measured on the first and last day of treatment, then 1 week after treatment. Following the 1-week period free from treatment, sucrose treated rats were significantly more active than the control. Two hours following final behavioral testing, brains were rapidly removed and prepared for proteomic analysis of the OFC. Label free quantitative shotgun proteomic analyses of three rats from each group found 290 proteins were differentially expressed in the sucrose treated group when compared to the control group. Major changes in the proteome were seen in proteins related to energy metabolism, mitochondrial function and the cellular response to stress. This research does not seek to suggest that sugar will cause specific neurological disorders, however similar changes in proteins have been seen in neurological disorders such as Alzheimer's disease, Parkinson's disease and schizophrenia.


Assuntos
Córtex Pré-Frontal/metabolismo , Proteoma/metabolismo , Sacarose/metabolismo , Animais , Metabolismo dos Carboidratos , Bebidas Gaseificadas/efeitos adversos , Ingestão de Energia , Metabolismo Energético , Glucose/metabolismo , Masculino , Mitocôndrias/metabolismo , Atividade Motora , Estresse Oxidativo , Córtex Pré-Frontal/fisiologia , Proteoma/análise , Proteômica , Ratos , Ratos Sprague-Dawley , Sacarose/efeitos adversos , Aumento de Peso
7.
J Proteome Res ; 15(5): 1455-71, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-26941107

RESUMO

Caffeine is a plant-derived psychostimulant and a common additive found in a wide range of foods and pharmaceuticals. The orbitofrontal cortex (OFC) is rapidly activated by flavours, integrates gustatory and olfactory information, and plays a critical role in decision-making, with dysfunction contributing to psychopathologies and neurodegenerative conditions. This study investigated whether long-term consumption of caffeine causes changes to behavior and protein expression in the OFC. Male adult Sprague-Dawley rats (n = 8 per group) were treated for 26 days with either water or a 0.6 g/L caffeine solution. Locomotor behavior was measured on the first and last day of treatment, then again after 9 days treatment free following exposure to a mild stressor. When tested drug free, caffeine-treated animals were hyperactive compared to controls. Two hours following final behavioral testing, brains were rapidly removed and prepared for proteomic analysis of the OFC. Label free shotgun proteomics found 157 proteins differentially expressed in the caffeine-drinking rats compared to control. Major proteomic effects were seen for cell-to-cell communication, cytoskeletal regulation, and mitochondrial function. Similar changes have been observed in neurological disorders including Alzheimer's disease, Parkinson's disease, and schizophrenia.


Assuntos
Cafeína/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Córtex Pré-Frontal/química , Proteômica/métodos , Animais , Comunicação Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Perfilação da Expressão Gênica , Masculino , Mitocôndrias/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Doenças do Sistema Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley
8.
J Physiol ; 594(3): 763-80, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26584821

RESUMO

KEY POINTS: Methamphetamine (METH) abuse is escalating worldwide, with the most common cause of death resulting from cardiovascular failure and hyperthermia; however, the underlying physiological mechanisms are poorly understood. Systemic administration of METH in anaesthetised rats reduced the effectiveness of some protective cardiorespiratory reflexes, increased central respiratory activity independently of metabolic function, and increased heart rate, metabolism and respiration in a pattern indicating that non-shivering thermogenesis contributes to the well-described hyperthermia. In animals that showed METH-induced behavioural sensitisation following chronic METH treatment, no changes were evident in baseline cardiovascular, respiratory and metabolic measures and the METH-evoked effects in these parameters were similar to those seen in saline-treated or drug naïve animals. Physiological effects evoked by METH were retained but were neither facilitated nor depressed following chronic treatment with METH. These data highlight and identify potential mechanisms for targeted intervention in patients vulnerable to METH overdose. Methamphetamine (METH) is known to promote cardiovascular failure or life-threatening hyperthermia; however, there is still limited understanding of the mechanisms responsible for evoking the physiological changes. In this study, we systematically determined the effects on both autonomic and respiratory outflows, as well as reflex function, following acute and repeated administration of METH, which enhances behavioural responses. Arterial pressure, heart rate, phrenic nerve discharge amplitude and frequency, lumbar and splanchnic sympathetic nerve discharge, interscapular brown adipose tissue and core temperatures, and expired CO2 were measured in urethane-anaesthetised male Sprague-Dawley rats. Novel findings include potent increases in central inspiratory drive and frequency that are not dependent on METH-evoked increases in expired CO2 levels. Increases in non-shivering thermogenesis correlate with well-described increases in body temperature and heart rate. Unexpectedly, METH evoked minor effects on both sympathetic outflows and mean arterial pressure. METH modified cardiorespiratory reflex function in response to hypoxia, hypercapnia and baroreceptor unloading. Chronically METH-treated rats failed to exhibit changes in baseline sympathetic, cardiovascular, respiratory and metabolic parameters. The tonic and reflex cardiovascular, respiratory and metabolic responses to METH challenge were similar to those seen in saline-treated and drug naive animals. Overall, these findings describe independent and compound associations between physiological systems evoked by METH and serve to highlight that a single dose of METH can significantly impact basic homeostatic systems and protective functions. These effects of METH persist even following chronic METH treatment.


Assuntos
Metanfetamina/farmacologia , Tecido Adiposo Marrom/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Região Lombossacral/fisiologia , Masculino , Atividade Motora/efeitos dos fármacos , Nervo Frênico/fisiologia , Ratos Sprague-Dawley , Reflexo/efeitos dos fármacos , Respiração/efeitos dos fármacos , Nervos Esplâncnicos/fisiologia , Sistema Nervoso Simpático/fisiologia , Termogênese/efeitos dos fármacos
9.
J Pharmacol Exp Ther ; 356(2): 424-33, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26578265

RESUMO

The ventrolateral medulla contains presympathetic and vagal preganglionic neurons that control vasomotor and cardiac vagal tone, respectively. G protein-coupled receptors influence the activity of these neurons. Gα s activates adenylyl cyclases, which drive cyclic adenosine monophosphate (cAMP)-dependent targets: protein kinase A (PKA), the exchange protein activated by cAMP (EPAC), and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. The aim was to determine the cardiovascular effects of activating and inhibiting these targets at presympathetic and cardiac vagal preganglionic neurons. Urethane-anesthetized rats were instrumented to measure splanchnic sympathetic nerve activity (sSNA), arterial pressure (AP), heart rate (HR), as well as baroreceptor and somatosympathetic reflex function, or were spinally transected and instrumented to measure HR, AP, and cardiac baroreflex function. All drugs were injected bilaterally. In the rostral ventrolateral medulla (RVLM), Sp-cAMPs and 8-Br-cAMP, which activate PKA, as well as 8-pCPT, which activates EPAC, increased sSNA, AP, and HR. Sp-cAMPs also facilitated the reflexes tested. Sp-cAMPs also increased cardiac vagal drive and facilitated cardiac baroreflex sensitivity. Blockade of PKA, using Rp-cAMPs or H-89 in the RVLM, increased sSNA, AP, and HR and increased HR when cardiac vagal preganglionic neurons were targeted. Brefeldin A, which inhibits EPAC, and ZD7288, which inhibits HCN channels, each alone had no effect. Cumulative, sequential blockade of all three inhibitors resulted in sympathoinhibition. The major findings indicate that Gα s-linked receptors in the ventral medulla can be recruited to drive both sympathetic and parasympathetic outflows and that tonically active PKA-dependent signaling contributes to the maintenance of both sympathetic vasomotor and cardiac vagal tone.


Assuntos
Pressão Sanguínea/fisiologia , AMP Cíclico/farmacologia , Frequência Cardíaca/fisiologia , Bulbo/fisiologia , Transdução de Sinais/fisiologia , Nervo Vago/fisiologia , Animais , Barorreflexo/efeitos dos fármacos , Barorreflexo/fisiologia , Pressão Sanguínea/efeitos dos fármacos , AMP Cíclico/análogos & derivados , Frequência Cardíaca/efeitos dos fármacos , Masculino , Bulbo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Nervo Vago/efeitos dos fármacos
10.
J Proteome Res ; 14(1): 397-410, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25245100

RESUMO

Repeat administration of psychostimulants, such as methamphetamine, produces a progressive increase in locomotor activity (behavioral sensitization) in rodents that is believed to represent the underlying neurochemical changes driving psychoses. Alterations to the prefrontal cortex (PFC) are suggested to mediate the etiology and maintenance of these behavioral changes. As such, the aim of the current study was to investigate changes to protein expression in the PFC in male rats sensitized to methamphetamine using quantitative label-free shotgun proteomics. A methamphetamine challenge resulted in a significant sensitized locomotor response in methamphetamine pretreated animals compared to saline controls. Proteomic analysis revealed 96 proteins that were differentially expressed in the PFC of methamphetamine treated rats, with 20% of these being previously implicated in the neurobiology of schizophrenia in the PFC. We identified multiple biological functions in the PFC that appear to be commonly altered across methamphetamine-induced sensitization and schizophrenia, and these include synaptic regulation, protein phosphatase signaling, mitochondrial function, and alterations to the inhibitory GABAergic network. These changes could inform how alterations to the PFC could underlie the cognitive and behavioral dysfunction commonly seen across psychoses and places such biological changes as potential mediators in the maintenance of psychosis vulnerability.


Assuntos
Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Metanfetamina/efeitos adversos , Córtex Pré-Frontal/metabolismo , Proteoma/metabolismo , Transtornos Psicóticos/fisiopatologia , Sinapses/metabolismo , Animais , Cromatografia Líquida , Bases de Dados de Proteínas , Eletroforese em Gel de Poliacrilamida , Masculino , Modelos Neurológicos , Córtex Pré-Frontal/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Transtornos Psicóticos/metabolismo , Ratos , Sinapses/efeitos dos fármacos , Espectrometria de Massas em Tandem
11.
J Proteome Res ; 14(9): 3492-502, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26215926

RESUMO

One of the major objectives of the Human Y Chromosome Proteome Project is to characterize sets of proteins encoded from the human Y chromosome. Lysine (K)-specific demethylase 5D (KDM5D) is located on the AZFb region of the Y chromosome and encodes a JmjC-domain-containing protein. KDM5D, the least well-documented member of the KDM5 family, is capable of demethylating di- and trimethyl H3K4. In this study, we detected two novel splice variants of KDM5D with lengths of 2650bp and 2400bp that correspond to the 100 and 80 kDa proteins in the human prostate cancer cell line, DU-145. The knockdown of two variants using the short interfering RNA (siRNA) approach increased the growth rate of prostate cancer cells and reduced cell apoptosis. To explore the proteome pattern of the cells after KDM5D downregulation, we applied a shotgun label-free quantitative proteomics approach. Of 820 proteins present in all four replicates of two treatments, the abundance of 209 proteins changed significantly in response to KDM5D suppression. Of these, there were 102 proteins observed to be less abundant and 107 more abundant in KDM5D knockdown cells compared with control cells. The results revealed that KDM5D knockdown altered the abundance of proteins involved in RNA processing, protein synthesis, apoptosis, the cell cycle, and growth and proliferation. In conjunction, these results provided new insights into the function of KDM5D and its splice variants. The proteomics data are available at PRIDE with ProteomeXchange identifier PXD000416.


Assuntos
Processamento Alternativo , Cromossomos Humanos Y , Histona Desmetilases/genética , Neoplasias da Próstata/enzimologia , Apoptose , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Histona Desmetilases/metabolismo , Humanos , Masculino , Antígenos de Histocompatibilidade Menor , RNA Interferente Pequeno/genética , Espectrometria de Massas em Tandem
12.
J Neurochem ; 128(4): 547-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24117713

RESUMO

Stress activates selected neuronal systems in the brain and this leads to activation of a range of effector systems. Our aim was to investigate some of the relationships between these systems under basal conditions and over a 40-min period in response to footshock stress. Specifically, we investigated catecholaminergic neurons in the locus coeruleus (LC), ventral tegmental area and medial prefrontal cortex (mPFC) in the brain, by measuring tyrosine hydroxylase (TH) protein, TH phosphorylation and TH activation. We also measured the effector responses by measuring plasma adrenocorticotrophic hormone, corticosterone, glucose and body temperature as well as activation of adrenal medulla protein kinases, TH protein, TH phosphorylation and TH activation. The LC, ventral tegmental area and adrenal medulla all had higher basal levels of Ser19 phosphorylation and lower basal levels of Ser31 phosphorylation than the mPFC, presumably because of their cell body versus nerve terminal location, while the adrenal medulla had the highest basal levels of Ser40 phosphorylation. Ser31 phosphorylation was increased in the LC at 20 and 40 min and in the mPFC at 40 min; TH activity was increased at 40 min in both tissues. There were significant increases in body temperature between 10 and 40 min, as well as increases in plasma adrenocorticotropic hormone at 20 min and corticosterone and glucose at 20 and 40 min. The adrenal medulla extracellular signal-regulated kinase 2 was increased between 10 and 40 min and Ser31 phosphorylation was increased at 20 min and 40 min. Protein kinase A and Ser40 phosphorylation were increased only at 40 min. TH activity was increased between 20 and 40 min. TH protein and Ser19 phosphorylation levels were not altered in any of the brain regions or adrenal medulla over the first 40 min. These findings indicate that acute footshock stress leads to activation of TH in the LC, pre-synaptic terminals in the mPFC and adrenal medullary chromaffin cells, as well as changes in activity of the hypothalamic-pituitary-adrenal axis.


Assuntos
Medula Suprarrenal/patologia , Encéfalo/patologia , Eletrochoque , Estresse Psicológico/patologia , Tirosina 3-Mono-Oxigenase/metabolismo , Medula Suprarrenal/enzimologia , Hormônio Adrenocorticotrópico/sangue , Animais , Glicemia/análise , Western Blotting , Temperatura Corporal , Encéfalo/enzimologia , Corticosterona/sangue , Ativação Enzimática/fisiologia , Locus Cerúleo/metabolismo , Masculino , Fosforilação , Córtex Pré-Frontal/metabolismo , Proteínas Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/fisiologia , Área Tegmentar Ventral/metabolismo
13.
Eur J Neurosci ; 40(7): 3067-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25040660

RESUMO

Identifying neurons essential for the generation of breathing and related behaviors such as vocalisation is an important question for human health. The targeted loss of preBötzinger Complex (preBötC) glutamatergic neurons, including those that express high levels of somatostatin protein (SST neurons), eliminates normal breathing in adult rats. Whether preBötC SST neurons represent a functionally specialised population is unknown. We tested the effects on respiratory and vocal behaviors of eliminating SST neuron glutamate release by Cre-Lox-mediated genetic ablation of the vesicular glutamate transporter 2 (VGlut2). We found the targeted loss of VGlut2 in SST neurons had no effect on viability in vivo, or on respiratory period or responses to neurokinin 1 or µ-opioid receptor agonists in vitro. We then compared medullary SST peptide expression in mice with that of two species that share extreme respiratory environments but produce either high or low frequency vocalisations. In the Mexican free-tailed bat, SST peptide-expressing neurons extended beyond the preBötC to the caudal pole of the VII motor nucleus. In the naked mole-rat, however, SST-positive neurons were absent from the ventrolateral medulla. We then analysed isolation vocalisations from SST-Cre;VGlut2(F/F) mice and found a significant prolongation of the pauses between syllables during vocalisation but no change in vocalisation number. These data suggest that glutamate release from preBötC SST neurons is not essential for breathing but play a species- and behavior-dependent role in modulating respiratory networks. They further suggest that the neural network generating respiration is capable of extensive plasticity given sufficient time.


Assuntos
Bulbo/metabolismo , Neurônios/metabolismo , Respiração , Somatostatina/metabolismo , Vocalização Animal/fisiologia , Animais , Quirópteros , Feminino , Ácido Glutâmico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos-Toupeira , Especificidade da Espécie , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
14.
Am J Physiol Regul Integr Comp Physiol ; 307(8): R1025-35, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25100075

RESUMO

The midbrain superior and inferior colliculi have critical roles in generating coordinated orienting or defensive behavioral responses to environmental stimuli, and it has been proposed that neurons within the colliculi can also generate appropriate cardiovascular and respiratory responses to support such behavioral responses. We have previously shown that activation of neurons within a circumscribed region in the deep layers of the superior colliculus and in the central and external nuclei of the inferior colliculus can evoke a response characterized by intense and highly synchronized bursts of renal sympathetic nerve activity and phrenic nerve activity. In this study, we tested the hypothesis that, under conditions in which collicular neurons are disinhibited, coordinated cardiovascular, somatomotor, and respiratory responses can be evoked by natural environmental stimuli. In response to natural auditory, visual, or somatosensory stimuli, powerful synchronized increases in sympathetic, respiratory, and somatomotor activity were generated following blockade of GABAA receptors in a specific region in the midbrain colliculi of anesthetized rats, but not under control conditions. Such responses still occurred after removal of most of the forebrain, including the amygdala and hypothalamus, indicating that the essential pathways mediating these coordinated responses were located within the brain stem. The temporal relationships between the different outputs suggest that they are driven by a common population of "command neurons" within the colliculi.


Assuntos
Estimulação Acústica , Sistema Nervoso Autônomo/fisiologia , Estado de Descerebração/fisiopatologia , Colículos Inferiores/fisiopatologia , Córtex Motor/fisiologia , Estimulação Luminosa , Fenômenos Fisiológicos Respiratórios , Colículos Superiores/fisiopatologia , Animais , Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados Visuais/fisiologia , Colículos Inferiores/efeitos dos fármacos , Masculino , Microinjeções , Modelos Animais , Picrotoxina/administração & dosagem , Picrotoxina/farmacologia , Ratos , Ratos Sprague-Dawley , Colículos Superiores/efeitos dos fármacos , Fatores de Tempo
15.
J Proteome Res ; 12(1): 6-22, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23253012

RESUMO

The Chromosome-centric Human Proteome Project (C-HPP) aims to systematically map the entire human proteome with the intent to enhance our understanding of human biology at the cellular level. This project attempts simultaneously to establish a sound basis for the development of diagnostic, prognostic, therapeutic, and preventive medical applications. In Iran, current efforts focus on mapping the proteome of the human Y chromosome. The male-specific region of the Y chromosome (MSY) is unique in many aspects and comprises 95% of the chromosome's length. The MSY continually retains its haploid state and is full of repeated sequences. It is responsible for important biological roles such as sex determination and male fertility. Here, we present the most recent update of MSY protein-encoding genes and their association with various traits and diseases including sex determination and reversal, spermatogenesis and male infertility, cancers such as prostate cancers, sex-specific effects on the brain and behavior, and graft-versus-host disease. We also present information available from RNA sequencing, protein-protein interaction, post-translational modification of MSY protein-coding genes and their implications in biological systems. An overview of Human Y chromosome Proteome Project is presented and a systematic approach is suggested to ensure that at least one of each predicted protein-coding gene's major representative proteins will be characterized in the context of its major anatomical sites of expression, its abundance, and its functional relevance in a biological and/or medical context. There are many technical and biological issues that will need to be overcome in order to accomplish the full scale mapping.


Assuntos
Cromossomos Humanos Y , Doenças Genéticas Ligadas ao Cromossomo Y , Projeto Genoma Humano , Sequências Repetitivas de Ácido Nucleico/genética , Mapeamento Cromossômico , Cromossomos Humanos Y/genética , Cromossomos Humanos Y/metabolismo , Expressão Gênica , Doenças Genéticas Ligadas ao Cromossomo Y/genética , Doenças Genéticas Ligadas ao Cromossomo Y/fisiopatologia , Humanos , Masculino , Mapas de Interação de Proteínas , Proteoma/genética , Caracteres Sexuais
16.
J Physiol ; 591(23): 6069-88, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24042503

RESUMO

The prefrontal cortex (PFC) is referred to as the visceral motor cortex; however, little is known about whether this region influences respiratory or metabolic outflows. The aim of this study was to describe simultaneous changes in respiratory, metabolic and cardiovascular functions evoked by disinhibition of the medial PFC (mPFC) and adjacent lateral septal nucleus (LSN). In urethane-anaesthetized rats, bicuculline methiodide was microinjected (2 mm; GABA-A receptor antagonist) into 90 sites in the mPFC at 0.72-4.00 mm from bregma. Phrenic nerve amplitude and frequency, arterial pressure, heart rate, splanchnic and lumbar sympathetic nerve activities (SNA), expired CO2, and core and brown adipose tissue temperatures were measured. Novel findings included disturbances to respiratory rhythm evoked from all subregions of the mPFC. Injections into the cingulate cortex evoked reductions in central respiratory function exclusively, whereas in ventral sites, particularly the infralimbic region, increases in respiratory drive and frequency, and metabolic and cardiac outflows were evoked. Disinhibition of sites in surrounding regions revealed that the LSN could evoke cardiovascular changes accompanied by distinct oscillations in SNA, as well as increases in respiratory amplitude. We show that activation of neurons within the mPFC and LSN influence respiratory, metabolic and cardiac outflows in a site-dependent manner. This study has implications with respect to the altered PFC neuronal activity seen in stress-related and mental health disorders, and suggests how basic physiological systems may be affected.


Assuntos
Bicuculina/análogos & derivados , Antagonistas GABAérgicos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/fisiologia , Animais , Pressão Arterial/efeitos dos fármacos , Bicuculina/farmacologia , Temperatura Corporal , Dióxido de Carbono/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Masculino , Nervo Frênico/efeitos dos fármacos , Nervo Frênico/fisiologia , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Sprague-Dawley , Respiração/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/fisiologia , Nervos Esplâncnicos/efeitos dos fármacos , Nervos Esplâncnicos/fisiologia
17.
Clin Exp Pharmacol Physiol ; 40(7): 458-65, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23662737

RESUMO

Altered autonomic control of the cardiovascular system in chronic kidney disease (CKD) contributes to an increased risk of cardiovascular events. The aim of the present study was to determine whether and when autonomic dysfunction occurs in a conscious, telemetered, rodent model of CKD. In Lewis polycystic kidney (LPK; n = 8) and Lewis (n = 8) rats, blood pressure (BP), heart rate (HR), HR variability (HRV), systolic BP variability (SBPV) and baroreflex sensitivity (BRS) were determined from 10 to 16 weeks of age. The LPK rats had higher systolic BP (average across all ages: 230 ± 10 vs 122.6 ± 0.3 mmHg; P < 0.001), increased SBPV (average across all ages: 13.9 ± 1.9 vs 5.2 ± 0.2 mmHg(2) ; P < 0.01) and reduced low-frequency HRV power (average across all ages: 1.5 ± 0.3 vs 2.6 ± 0.2 msec(2) ; P < 0.05). Between 10 and 12 weeks of age, SBPV increased twofold in the LPK rat (8.13 ± 1.05 vs 16.10 ± 1.31 mmHg(2) for 10 vs 12 weeks of age, respectively; P < 0.001), coinciding with an approximate 40% reduction in BRS (1.32 ± 0.14 vs 0.79 ± 0.11 ms/mmHg for 10 vs 12 weeks of age, respectively; P < 0.05). There was no difference in BRS between LPK and Lewis rats at 10 weeks of age; however, from 12 weeks onwards, BRS was reduced in LPK rats (0.75 ± 0.01 vs 1.17 ± 0.04 ms/mmHg; P < 0.01). Baroreceptor regulation of HR becomes impaired between 10 and 12 weeks of age in the LPK rat, coinciding with an increase in SBPV. Preventing baroreflex dysfunction in CKD may reduce SBPV and the associated mortality risks.


Assuntos
Pressorreceptores/fisiopatologia , Insuficiência Renal Crônica/fisiopatologia , Animais , Sistema Nervoso Autônomo/fisiopatologia , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Sistema Cardiovascular/fisiopatologia , Modelos Animais de Doenças , Frequência Cardíaca/fisiologia , Masculino , Doenças Renais Policísticas/fisiopatologia , Ratos , Ratos Endogâmicos Lew
18.
Cardiovasc Res ; 118(4): 1138-1149, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33774660

RESUMO

AIMS: Hypertension is a prevalent yet poorly understood feature of polycystic kidney disease. Previously, we demonstrated that increased glutamatergic neurotransmission within the hypothalamic paraventricular nucleus produces hypertension in the Lewis Polycystic Kidney (LPK) rat model of polycystic kidney disease. Here, we tested the hypothesis that augmented glutamatergic drive to the paraventricular nucleus in Lewis polycystic kidney rats originates from the forebrain lamina terminalis, a sensory structure that relays blood-borne information throughout the brain. METHODS AND RESULTS: Anatomical experiments revealed that 38% of paraventricular nucleus-projecting neurons in the subfornical organ of the lamina terminalis expressed Fos/Fra, an activation marker, in LPK rats while <1% of neurons were Fos/Fra+ in Lewis control rats (P = 0.01, n = 8). In anaesthetized rats, subfornical organ neuronal inhibition using isoguvacine produced a greater reduction in systolic blood pressure in LPK vs. Lewis rats (-21±4 vs. -7±2 mmHg, P < 0.01; n = 10), which could be prevented by prior blockade of paraventricular nucleus ionotropic glutamate receptors using kynurenic acid. Blockade of ionotropic glutamate receptors in the paraventricular nucleus produced an exaggerated depressor response in LPK relative to Lewis rats (-23±4 vs. -2±3 mmHg, P < 0.001; n = 13), which was corrected by prior inhibition of the subfornical organ with muscimol but unaffected by chronic systemic angiotensin II type I receptor antagonism or lowering of plasma hyperosmolality through high-water intake (P > 0.05); treatments that both nevertheless lowered blood pressure in LPK rats (P < 0.0001). CONCLUSION: Our data reveal multiple independent mechanisms contribute to hypertension in polycystic kidney disease, and identify high plasma osmolality, angiotensin II type I receptor activation and, importantly, a hyperactive subfornical organ to paraventricular nucleus glutamatergic pathway as potential therapeutic targets.


Assuntos
Hipertensão , Doenças Renais Policísticas , Órgão Subfornical , Angiotensina II/metabolismo , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Doenças Renais Policísticas/metabolismo , Ratos , Ratos Endogâmicos Lew , Receptores Ionotrópicos de Glutamato/metabolismo , Órgão Subfornical/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 301(4): R1112-22, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21795636

RESUMO

To determine the organization of presympathetic vasomotor drive by phenotypic populations of rostral ventrolateral medulla (RVLM) neurons, we examined the somatosympathetic reflex (SSR) evoked in four sympathetic nerves together with selective lesions of RVLM presympathetic neurons. Urethane-anesthetized (1.3 g/kg ip), paralyzed, vagotomized and artificially ventilated Sprague-Dawley rats (n = 41) were used. First, we determined the afferent inputs activated by sciatic nerve (SN) stimulation at graded stimulus intensities (50 sweeps at 0.5-1 Hz, 1-80 V). Second, we recorded sympathetic nerve responses (cervical, renal, splanchnic, and lumbar) to intensities of SN stimulation that activated A-fiber afferents (low) or both A- and C-fiber afferents (high). Third, with low-intensity SN stimulation, we examined the cervical SSR following RVLM microinjection of somatostatin, and we determined the splanchnic SSR in rats in which presympathetic C1 neurons were lesioned following intraspinal injections of anti-dopamine-ß-hydroxylase-saporin (anti-DßH-SAP). Low-intensity SN stimulation activated A-fiber afferents and evoked biphasic responses in the renal, splanchnic, and lumbar nerves and a single peak in the cervical nerve. Depletion of presympathetic C1 neurons (59 ± 4% tyrosine hydroxylase immunoreactivity profiles lesioned) eliminated peak 2 of the splanchnic SSR and attenuated peak 1, suggesting that only RVLM neurons with fast axonal conduction were spared. RVLM injections of somatostatin abolished the single early peak of cervical SSR confirming that RVLM neurons with fast axonal conduction were inhibited by somatostatin. It is concluded that unmyelinated RVLM presympathetic neurons, presumed to be all C1, innervate splanchnic, renal, and lumbar but not cervical sympathetic outflows, whereas myelinated C1 and non-C1 RVLM neurons innervate all sympathetic outflows examined. These findings suggest that multiple levels of neural control of vasomotor tone exist; myelinated populations may set baseline tone, while unmyelinated neurons may be recruited to provide actions at specific vascular beds in response to distinct stressors.


Assuntos
Bulbo/fisiologia , Condução Nervosa/fisiologia , Neurônios/fisiologia , Fenótipo , Sistema Nervoso Simpático/fisiologia , Animais , Estimulação Elétrica , Epinefrina/metabolismo , Glutamatos/metabolismo , Masculino , Microinjeções , Modelos Animais , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Condução Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Ratos , Ratos Sprague-Dawley , Somatostatina/administração & dosagem , Somatostatina/farmacologia
20.
Bioconjug Chem ; 22(9): 1768-75, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21823634

RESUMO

Somatostatin (SST) is a peptide neurotransmitter/hormone found in several mammalian tissue types. Apart from its natural importance, labeled SST/analogues are utilized in clinical applications such as targeting/diagnosis of neuroendocrine tumors. We report on the development and characterization of a novel, recombinant, fluorescent somatostatin analogue that has potential to elucidate somatostatin-activated cell signaling. SST was genetically fused with a monomeric-red fluorescent protein (mRFP) as the fluorescent label. The attachment of SST to mRFP had no detectable effect on its fluorescent properties. This analogue's potency to activate the endogenous and transfected somatostatin receptors was characterized using assays of membrane potential and Ca(2+) mobilization and immunocytochemistry. SST-mRFP was found to be an effective somatostatin receptor agonist, able to trigger the membrane hyperpolarization, mobilization of the intracellular Ca(2+) and receptor-ligand internalization in cells expressing somatostatin receptors. This complex represents a novel optical reporter due to its red emission spectral band suitable for in vivo imaging and tracking of the somatostatin receptor signaling pathways, affording higher resolution and sensitivity than those of the state-of-the-art radiolabeling bioassays.


Assuntos
Receptores de Somatostatina/agonistas , Proteínas Recombinantes/farmacologia , Somatostatina/genética , Animais , Sequência de Bases , Células CHO , Cálcio/metabolismo , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Fluorescência , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Potenciais da Membrana , Camundongos , Dados de Sequência Molecular , Engenharia de Proteínas/métodos , Receptores de Somatostatina/genética , Somatostatina/farmacologia , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA