Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Chembiochem ; 23(6): e202100633, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35061295

RESUMO

The ubiquitin ligase C-terminus of Hsc70 interacting protein (CHIP) is an important regulator of proteostasis. Despite playing an important role in maintaining proteostasis, little progress has been made in developing small molecules that regulate ubiquitin transfer by CHIP. Here we used differential scanning fluorimetry to identify compounds that bound CHIP. Compounds that bound CHIP were then analyzed by quantitative ubiquitination assays to identify those that altered CHIP function. One compound, MS.001, inhibited both the chaperone binding and ubiquitin ligase activity of CHIP at low micromolar concentrations. Interestingly, we found that MS.001 did not have activity against isolated U-box or tetratricopeptide (TPR) domains, but instead only inhibited full-length CHIP. Using in silico docking we identified a potential MS.001 binding site on the linker domain of CHIP and mutation of this site rendered CHIP resistant to MS.001. Together our data identify an inhibitor of the E3 ligase CHIP and provides insight into the development of compounds that regulate CHIP activity.


Assuntos
Proteína C , Ubiquitina-Proteína Ligases , Proteína C/genética , Proteína C/metabolismo , Estrutura Terciária de Proteína , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Bioorg Med Chem Lett ; 28(4): 694-699, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29366652

RESUMO

Mutations in the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) are commonly found in gliomas. AGI-5198, a potent and selective inhibitor of the mutant IDH1 enzyme, was radiolabeled with radioiodine and fluorine-18. These radiotracers were evaluated as potential probes for imaging mutant IDH1 expression in tumors with positron emission tomography (PET). Radioiodination of AGI-5198 was achieved using a tin precursor in 79 ±â€¯6% yield (n = 9), and 18F-labeling was accomplished by the Ugi reaction in a decay-corrected radiochemical yield of 2.6 ±â€¯1.6% (n = 5). The inhibitory potency of the analogous nonradioactive compounds against mutant IDH1 (IDH1-R132H) was determined in enzymatic assays. Cell uptake studies using radiolabeled AGI-5198 analogues revealed somewhat higher uptake in IDH1-mutated cells than that in wild-type IDH1 cells. The radiolabeled compounds displayed favorable tissue distribution characteristics in vivo, and good initial uptake in IDH1-mutated tumor xenografts; however, tumor uptake decreased with time. Radioiodinated AGI-5198 exhibited higher tumor-to-background ratios compared with 18F-labeled AGI-5198; unfortunately, similar results were observed in wild-type IDH1 tumor xenografts as well, indicating lack of selectivity for mutant IDH1 for this tracer. These results suggest that AGI-5198 analogues are not a promising platform for radiotracer development. Nonetheless, insights gained from this study may help in design and optimization of novel chemical scaffolds for developing radiotracers for imaging the mutant IDH1 enzyme.


Assuntos
Benzenoacetamidas/farmacologia , Glioma/metabolismo , Imidazóis/farmacologia , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/metabolismo , Compostos Radiofarmacêuticos/farmacologia , Substituição de Aminoácidos , Animais , Benzenoacetamidas/síntese química , Benzenoacetamidas/química , Linhagem Celular Tumoral , Radioisótopos de Flúor , Halogenação , Xenoenxertos , Humanos , Imidazóis/síntese química , Imidazóis/química , Radioisótopos do Iodo , Isocitrato Desidrogenase/genética , Camundongos Nus , Músculos/metabolismo , Mutação , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Relação Estrutura-Atividade
3.
Anal Chem ; 88(22): 10987-10993, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27740755

RESUMO

The characterization of protein folding stability changes on the proteomic scale is useful for protein-target discovery and for the characterization of biological states. The Stability of Proteins from Rates of Oxidation (SPROX) technique is one of several mass spectrometry-based techniques recently established for the making proteome-wide measurements of protein folding and stability. A critical part of proteome-wide applications of SPROX is the identification and quantitation of methionine-containing peptides. Demonstrated here is a targeted mass spectrometry-based proteomics strategy for the detection and quantitation of methionine-containing peptides in SPROX experiments. The strategy involves the use of phenacyl bromide (PAB) for the targeted detection and quantitation of methionine-containing peptides in SPROX using selective reaction monitoring (SRM) on a triple quadrupole mass spectrometer (QQQ-MS). As proof-of-principle, the known binding interaction of Cyclosporine A with cyclophilin A protein in a yeast cell lysate is successfully detected and quantified using a targeted SRM workflow. Advantages of the described workflow over other SPROX protocols include a 20-fold reduction in the amount of total protein needed for analysis and the ability to work with the endogenous proteins in a given sample (e.g., stabile isotope labeling with amino acids in cell culture is not necessary).


Assuntos
Acetofenonas/química , Ligantes , Espectrometria de Massas , Proteínas/química , Sítios de Ligação , Oxirredução , Peptídeos/química , Dobramento de Proteína
4.
J Biol Chem ; 289(34): 23318-28, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-24986863

RESUMO

Mutations in the cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDH1) occur in several types of cancer, and altered cellular metabolism associated with IDH1 mutations presents unique therapeutic opportunities. By altering IDH1, these mutations target a critical step in reductive glutamine metabolism, the metabolic pathway that converts glutamine ultimately to acetyl-CoA for biosynthetic processes. While IDH1-mutated cells are sensitive to therapies that target glutamine metabolism, the effect of IDH1 mutations on reductive glutamine metabolism remains poorly understood. To explore this issue, we investigated the effect of a knock-in, single-codon IDH1-R132H mutation on the metabolism of the HCT116 colorectal adenocarcinoma cell line. Here we report the R132H-isobolome by using targeted (13)C isotopomer tracer fate analysis to trace the metabolic fate of glucose and glutamine in this system. We show that introduction of the R132H mutation into IDH1 up-regulates the contribution of glutamine to lipogenesis in hypoxia, but not in normoxia. Treatment of cells with a d-2-hydroxyglutarate (d-2HG) ester recapitulated these changes, indicating that the alterations observed in the knocked-in cells were mediated by d-2HG produced by the IDH1 mutant. These studies provide a dynamic mechanistic basis for metabolic alterations observed in IDH1-mutated tumors and uncover potential therapeutic targets in IDH1-mutated cancers.


Assuntos
Hipóxia Celular , Glutaratos/metabolismo , Isocitrato Desidrogenase/genética , Neoplasias/enzimologia , Linhagem Celular Tumoral , Glicólise , Células HCT116 , Humanos , Isocitrato Desidrogenase/metabolismo , Mitocôndrias/fisiologia , Neoplasias/patologia
5.
J Am Chem Soc ; 136(43): 15118-21, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25229309

RESUMO

Pairs of chemically equivalent (or nearly equivalent) spin-1/2 nuclei have been shown to create disconnected eigenstates that are very long-lived compared with the lifetime of pure magnetization (T1). Here the classes of molecules known to have accessible long-lived states are extended to include those with chemically equivalent spin-1/2 nuclei accessed by coupling to nuclei with spin > 1/2, in this case deuterium. At first, this appears surprising because the quadrupolar interactions present in nuclei with spin > 1/2 are known to cause fast relaxation. Yet it is shown that scalar couplings between deuterium and carbon can guide population into and out of long-lived states, i.e., those immune from the dominant relaxation mechanisms. This implies that it may be practical to consider compounds with (13)C pairs directly bound to deuterium (or even (14)N) as candidates for storage of polarization. In addition, experiments show that simple deuteration of molecules with (13)C pairs at their natural abundance is sufficient for successful lifetime measurements.


Assuntos
Acetileno/química , Fenômenos Magnéticos , Deutério/química , Espectroscopia de Ressonância Magnética
6.
Cell Chem Biol ; 31(3): 465-476.e12, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-37918401

RESUMO

Conventional antimicrobial discovery relies on targeting essential enzymes in pathogenic organisms, contributing to a paucity of new antibiotics to address resistant strains. Here, by targeting a non-essential enzyme, Borrelia burgdorferi HtpG, to deliver lethal payloads, we expand what can be considered druggable within any pathogen. We synthesized HS-291, an HtpG inhibitor tethered to the photoactive toxin verteporfin. Reactive oxygen species, generated by light, enables HS-291 to sterilize Borrelia cultures by causing oxidation of HtpG, and a discrete subset of proteins in proximity to the chaperone. This caused irreversible nucleoid collapse and membrane blebbing. Tethering verteporfin to the HtpG inhibitor was essential, since free verteporfin was not retained by Borrelia in contrast to HS-291. For this reason, we liken HS-291 to a berserker, wreaking havoc upon the pathogen's biology once selectively absorbed and activated. This strategy expands the druggable pathogenic genome and offsets antibiotic resistance by targeting non-essential proteins.


Assuntos
Borrelia burgdorferi , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Verteporfina/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Chaperonas Moleculares/metabolismo
7.
Environ Sci Technol ; 47(9): 4449-54, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23565680

RESUMO

With the phase-out of polybrominated diphenyl ether (PBDE) flame retardants, the use of new and alternate flame retardants has been increasing. 2,2-bis(chloromethyl)propane-1,3-diyltetrakis(2-chloroethyl) bisphosphate, known as V6, is a flame retardant applied to polyurethane foam commonly found in furniture and automobile foam. However, to the authors' knowledge, no research has been conducted on V6 levels in the environment. The intention of this study was to measure the concentration of V6 in foam collected from baby products where it was recently detected and measure levels in dust samples collected from homes and automobiles in the Boston, MA area. To accomplish this, a pure V6 commercial standard was purchased from a Chinese manufacturer and purified (>98%). An analytical method to measure V6 in dust samples using liquid chromatography tandem mass spectrometry (LC/MS-MS) was developed. Extraction was conducted using accelerated solvent extraction (ASE) and extracts were purified using an ENVI-Florisil SPE column (500 mg, 3 mL). V6 was measured in foam samples collected from baby products with a concentration ranging from 24,500,000 to 59,500,000 ng/g of foam (n = 12, average ± sd: 46,500,000 ± 12,000,000 ng/g; i.e., on average, 4.6% of the foam mass was V6). V6 was also detected in 19 of 20 car dust samples and 14 of 20 house dust samples analyzed. The concentration of V6 in the house dust ranged from <5 ng/g to 1110 ng/g with a median of 12.5 ng/g, and <5 ng/g to 6160 ng/g in the car dust with a median of 103.0 ng/g. Concentrations in car dust were significantly higher than in the house dust potentially indicating higher use of V6 in automobiles compared to products found in the home. Furthermore, tris (2-chloroethyl) phosphate (TCEP), a known carcinogen, was found in the V6 commercial mixture (14% by weight) as an impurity and was consistently detected with V6 in the foam samples analyzed. A significant correlation was also observed between V6 and TCEP in the dust samples suggesting that the use of V6 is a significant source of TCEP in the indoor environment.


Assuntos
Poeira/análise , Retardadores de Chama/análise , Veículos Automotores , Características de Residência , Cromatografia Líquida , Espectrometria de Massas em Tandem
8.
Sci Transl Med ; 15(708): eadf5668, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556556

RESUMO

The UDP-3-O-(R-3-hydroxyacyl)-N-acetylglucosamine deacetylase LpxC is an essential enzyme in the biosynthesis of lipid A, the outer membrane anchor of lipopolysaccharide and lipooligosaccharide in Gram-negative bacteria. The development of LpxC-targeting antibiotics toward clinical therapeutics has been hindered by the limited antibiotic profile of reported non-hydroxamate inhibitors and unexpected cardiovascular toxicity observed in certain hydroxamate and non-hydroxamate-based inhibitors. Here, we report the preclinical characterization of a slow, tight-binding LpxC inhibitor, LPC-233, with low picomolar affinity. The compound is a rapid bactericidal antibiotic, unaffected by established resistance mechanisms to commercial antibiotics, and displays outstanding activity against a wide range of Gram-negative clinical isolates in vitro. It is orally bioavailable and efficiently eliminates infections caused by susceptible and multidrug-resistant Gram-negative bacterial pathogens in murine soft tissue, sepsis, and urinary tract infection models. It displays exceptional in vitro and in vivo safety profiles, with no detectable adverse cardiovascular toxicity in dogs at 100 milligrams per kilogram. These results establish the feasibility of developing oral LpxC-targeting antibiotics for clinical applications.


Assuntos
Bactérias Gram-Negativas , Lipídeo A , Animais , Camundongos , Cães , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/química
9.
J Proteome Res ; 11(4): 2480-91, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22390303

RESUMO

The S-nitrosoglutathione-metabolizing enzyme, GSNO reductase (GSNOR), has emerged as an important regulator of protein S-nitrosylation. GSNOR ablation is protective in models of asthma and heart failure, raising the idea that GSNOR inhibitors might hold therapeutic value. Here, we investigated the effects of a small molecule inhibitor of GSNOR (GSNORi) in mouse RAW 264.7 macrophages. We found that GSNORi increased protein S-nitrosylation in cytokine-stimulated cells, and we utilized stable isotope labeling of amino acids in cell culture (SILAC) to quantify the cellular response to this "nitrosative stress". The expression of several cytokine-inducible immunomodulators, including osteopontin, cyclooxygenase-2, and nitric oxide synthase isoform 2 (NOS2), were decreased by GSNORi. In addition, selective targets of the redox-regulated transcription factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-including heme oxygenase 1 (HO-1) and glutamate cysteine ligase modulatory subunit-were induced by GSNORi in a NOS2- and Nrf2-dependent manner. In cytokine-stimulated cells, Nrf2 protected from GSNORi-induced glutathione depletion and cytotoxicity and HO-1 activity was required for down-regulation of NOS2. Interestingly, GSNORi also affected a marked increase in NOS2 protein stability. Collectively, these data provide the most complete description of the global effects of GSNOR inhibition and demonstrate several important mechanisms for inducible response to GSNORi-mediated nitrosative stress.


Assuntos
Aldeído Oxirredutases/antagonistas & inibidores , Proteoma/análise , Estresse Fisiológico/fisiologia , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Regulação da Expressão Gênica , Heme Oxigenase (Desciclizante)/metabolismo , Marcação por Isótopo , Macrófagos/química , Macrófagos/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrosação , Proteoma/metabolismo , S-Nitrosoglutationa/metabolismo
11.
Bioorg Med Chem ; 20(2): 859-65, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22222159

RESUMO

Ramoplanin, a non-ribosomally synthesized peptide antibiotic, is highly effective against several drug-resistant Gram-positive bacteria, including vancomycin-resistant Enterococcus faecium (VRE) and methicillin-resistant Staphylococcus aureus (MRSA), two important opportunistic human pathogens. Recently, the biosynthetic cluster from the ramoplanin producer Actinoplanes ATCC 33076 was sequenced, revealing an unusual architecture of fatty acid and non-ribosomal peptide synthetase biosynthetic genes (NRPSs). The first steps towards understanding how these biosynthetic enzymes cooperatively interact to produce the depsipeptide product are expression and isolation of each enzyme to probe its specificity and function. Here we describe the successful production of soluble enzymes from within the ramoplanin locus and the confirmation of their specific role in biosynthesis. These methods may be broadly applicable to the production of biosynthetic enzymes from other natural product biosynthetic gene clusters, especially those that have been refractory to production in heterologous hosts despite standard expression optimization methods.


Assuntos
Antibacterianos/biossíntese , Depsipeptídeos/biossíntese , Glicoproteínas/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Depsipeptídeos/farmacologia , Glicoproteínas/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Cinética , Micromonosporaceae/genética , Família Multigênica , Peptídeo Sintases/genética
12.
Bioorg Med Chem ; 20(22): 6751-7, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23063522

RESUMO

The Hedgehog signaling pathway plays an essential role in embryo development and adult tissue homeostasis, in regulating stem cells and is abnormally activated in many cancers. Given the importance of this signaling pathway, we developed a novel and versatile high-throughput, cell-based screening platform using confocal imaging, based on the role of ß-arrestin in Hedgehog signal transduction, that can identify agonists or antagonist of the pathway by a simple change to the screening protocol. Here we report the use of this assay in the antagonist mode to identify novel antagonists of Smoothened, including a compound (A8) with low nanomolar activity against wild-type Smo also capable of binding the Smo point mutant D473H associated with clinical resistance in medulloblastoma. Our data validate this novel screening approach in the further development of A8 and related congeners to treat Hedgehog related diseases, including the treatment of basal cell carcinoma and medulloblastoma.


Assuntos
Benzamidas/química , Proteínas Hedgehog/metabolismo , Piridinas/química , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Benzamidas/síntese química , Benzamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neurônios/citologia , Piridinas/síntese química , Piridinas/farmacologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Receptor Smoothened
13.
Environ Pollut ; 287: 117299, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34023658

RESUMO

Azobenzene disperse dyes are the fastest-growing class of dyestuffs, yet little is known about dye occurrences, sources, and transformations; azo dyes are also underrepresented in chemical standard catalogs, molecular databases, and mass spectral libraries. Many azo dyes are known to have sensitization, mutagenic, and carcinogenic properties. To fill these knowledge gaps, azo dyes were purified from dyestuffs by Soxhlet extraction and flash chromatography and characterized using ultra-high-performance liquid chromatography (UHPLC) coupled to a high resolution Orbitrap Fusion Lumos mass spectrometer operated in positive electrospray ionization mode, as well as by 1H and 13C NMR. Data were analyzed to identify likely chemical formulas and structures using a weight-of-evidence approach with multiple open-source, in silico computational mass spectrometry tools. Nineteen total azobenzene dyes were detected in dyestuffs via a non-targeted analysis approach; the azobenzene dyes Disperse Blue 79:1, Disperse Blue 183:1, Disperse Orange 44, Disperse Orange 73, Disperse Red 50, Disperse Red 73, and Disperse Red 354 were purified from raw dyestuffs. Samples of children's polyester clothing were then analyzed likewise. In clothing, 21 azobenzene disperse dyes were detected, 12 of which were confirmed and quantified via reference standards. Individual dyes in apparel were quantified at concentrations up to 9230 µg dye/g shirt, with geometric means ranging 7.91-300 µg dye/g shirt. Total dye load in apparel was quantified at up to 11,430 µg dye/g shirt. This research supported the development of reference standards and library mass spectra for azobenzene disperse dyes previously absent from standard and spectral libraries. By analyzing the scope and quantities of azo dyes in children's polyester apparel, this study will facilitate a more robust understanding of sources of these potentially allergenic and mutagenic compounds.


Assuntos
Corantes , Poliésteres , Compostos Azo , Criança , Vestuário , Humanos
14.
JID Innov ; 1(3): 100043, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34909738

RESUMO

Increased breakdown of glucose through glycolysis in both aerobic and anaerobic conditions is a hallmark feature of mammalian cancer and leads to increased production of L-lactate. The high-level lactate present within the tumor microenvironment is reused as a crucial biofuel to support rapid cancer cell proliferation, survival, and immune evasion. Inhibitors that target the glycolysis process are being developed for cancer therapy. In this study, we report an approach of using synthetic D-lactate dimers to inhibit melanoma and squamous cell carcinoma cell proliferation and survival. We also provide in vivo evidence that intratumoral injection of D-lactate dimers induced an innate immune response and inhibited subcutaneous melanoma xenograft growth in immunodeficient mice. Our findings support a potential utility of D-lactate dimers in skin cancer treatment and therefore warrant further mechanistic studies.

15.
Photochem Photobiol ; 96(5): 1014-1031, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32221980

RESUMO

Psoralen is a furocoumarin natural product that intercalates within DNA and forms covalent adducts when activated by ultraviolet radiation. It is well known that this property contributes to psoralen's clinical efficacy in several disease contexts, which include vitiligo, psoriasis, graft-versus-host disease and cutaneous T-cell lymphoma. Given the therapeutic relevance of psoralen and its derivatives, we attempted to synthesize psoralens with even greater potency. In this study, we report a library of 73 novel psoralens, the largest collection of its kind. When screened for the ability to reduce cell proliferation, we identified two derivatives even more cytotoxic than 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT), one of the most potent psoralens identified to date. Using MALDI-TOF MS, we studied the DNA adduct formation for a subset of novel psoralens and found that in most cases enhanced DNA binding correlated well with cytotoxicity. Generally, our most potent derivatives contain positively charged substituents, which we believe increase DNA affinity and enhance psoralen intercalation. Thus, we provide a rational approach to guide efforts toward further optimizing psoralens to fully capitalize on this drug class' therapeutic potential. Finally, the structure-activity insights we have gained shed light on several opportunities to study currently underappreciated aspects of psoralen's mechanism.


Assuntos
DNA/efeitos dos fármacos , Furocumarinas/farmacologia , Animais , Linhagem Celular Tumoral , DNA/química , Adutos de DNA , Furocumarinas/química , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Raios Ultravioleta
16.
SLAS Discov ; 24(6): 628-640, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30917061

RESUMO

Mast cells (MCs) are known to regulate innate and adaptive immunity. MC activators have recently been described as safe and effective vaccine adjuvants. Many currently known MC activators are inadequate for in vivo applications, however, and research on identifying novel MC activators is limited. In this study, we identified novel MC activators by using high-throughput screening (HTS) assays using approximately 55,000 small molecules. Data sets obtained by the primary HTS assays were statistically evaluated using quality control rules and the B-score calculation, and compounds with B-scores of >3.0 were chosen as mast cell activators (hits). These hits were re-evaluated with secondary and tertiary HTS assays, followed by further statistical analysis. From these hits, we selected 15 compounds that caused degranulation in murine and human MCs, with potential for flexible chemical modification for further study. Among these 15 compounds, ST101036, ST029248, and ST026567 exhibited higher degranulation potency than other hit compounds in both human and mouse MCs. In addition, the 15 compounds identified promote de novo synthesis of cytokines and induce the release of eicosanoids from human and mouse MCs. HTS enabled us to identify small-molecule MC activators with unique properties that may be useful as vaccine adjuvants.


Assuntos
Degranulação Celular/efeitos dos fármacos , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Animais , Ácido Araquidônico/metabolismo , Biomarcadores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/normas , Humanos , Mastócitos/metabolismo , Camundongos , Controle de Qualidade , Bibliotecas de Moléculas Pequenas
17.
Photochem Photobiol ; 84(3): 700-5, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18399924

RESUMO

Three naturally occurring pyrrole acids were found in Sepia, human black hair, and bovine choroid and iris melanosomes using high-performance liquid chromatography and mass spectrometry--pyrrole-2,3-dicarboxylic acid (PDCA), pyrrole-2,3,5-tricarboxylic acid (PTCA) and pyrrole-2,3,4,5-tetracarboxylic acid (PTeCA). PDCA and PTCA are common markers quantified from oxidative degradation of eumelanins. Using standards, the amounts of naturally occurring PDCA and PTCA were determined and compared to those obtained following peroxide oxidation of the same samples. Because the naturally occurring acids are water soluble, these results indicate that care must be exercised when comparing PDCA and PTCA yields from the degradation analyses of melanins isolated and prepared by different methods. This work also establishes that PTeCA is a naturally occurring pyrrole acid in melanosomes.


Assuntos
Ácidos Carboxílicos/análise , Melanossomas/química , Pirróis/análise , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Cabelo/química , Humanos
19.
Sci Rep ; 7(1): 11793, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28924233

RESUMO

Binding of calcium to its intracellular receptor calmodulin (CaM) activates a family of Ca2+/CaM-dependent protein kinases. CaMKK2 (Ca2+/CaM-dependent protein kinase kinase 2) is a central member of this kinase family as it controls the actions of a CaMK cascade involving CaMKI, CaMKIV or AMPK. CaMKK2 controls insulin signaling, metabolic homeostasis, inflammation and cancer cell growth highlighting its potential as a therapeutic target for a variety of diseases. STO-609 is a selective, small molecule inhibitor of CaMKK2. Although STO-609 has been used extensively in vitro and in cells to characterize and define new mechanistic functions of CaMKK2, only a few studies have reported the in vivo use of STO-609. We synthesized functional STO-609 and assessed its pharmacological properties through in vitro (kinase assay), ex vivo (human liver microsomes) and in vivo (mouse) model systems. We describe the metabolic processing of STO-609, its toxicity, pharmacokinetics and bioavailability in a variety of mouse tissues. Utilizing these data, we show STO-609 treatment to inhibit CaMKK2 function confers protection against non-alcoholic fatty liver disease. These data provide a valuable resource by establishing criteria for use of STO-609 to inhibit the in vivo functions of CaMKK2 and demonstrate its utility for treating metabolically-related hepatic disease.


Assuntos
Benzimidazóis , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Naftalimidas , Hepatopatia Gordurosa não Alcoólica , Animais , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/patologia , Naftalimidas/farmacocinética , Naftalimidas/farmacologia , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle
20.
Chemosphere ; 149: 314-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26874059

RESUMO

In vitro studies using avian hepatocytes or human liver microsomes suggest that hydroxylation is an important pathway in the metabolism of triphenyl phosphate (TPHP), a chemical used as a flame retardant and plasticizer. TPHP metabolism can lead to the formation of para(p)- and meta(m)-hydroxyl-(OH-)TPHP products as well as their glucuronide conjugates. To determine whether the TPHP hydroxylation and depuration pathway also occurs in vivo in humans, the present study developed a sensitive method for quantification of p- and m-OH-TPHP glucuronides in human urine samples. In n = 1 pooled urine sample and n = 12 individual urine samples collected from four human volunteers from Ottawa (ON, Canada), p- and m-OH-TPHP glucuronides were detectable in 13 and 9 of the 13 analyzed samples and at concentrations ranging from

Assuntos
Biomarcadores/urina , Exposição Ambiental/análise , Poluentes Ambientais/urina , Glucuronídeos/urina , Organofosfatos/urina , Biomarcadores/metabolismo , Canadá , Retardadores de Chama/metabolismo , Glucuronídeos/metabolismo , Hepatócitos/metabolismo , Humanos , Radical Hidroxila/metabolismo , Radical Hidroxila/urina , Hidroxilação , Microssomos Hepáticos/metabolismo , Plastificantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA