Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Nature ; 520(7547): 353-357, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25830880

RESUMO

Cancers emerge from an ongoing Darwinian evolutionary process, often leading to multiple competing subclones within a single primary tumour. This evolutionary process culminates in the formation of metastases, which is the cause of 90% of cancer-related deaths. However, despite its clinical importance, little is known about the principles governing the dissemination of cancer cells to distant organs. Although the hypothesis that each metastasis originates from a single tumour cell is generally supported, recent studies using mouse models of cancer demonstrated the existence of polyclonal seeding from and interclonal cooperation between multiple subclones. Here we sought definitive evidence for the existence of polyclonal seeding in human malignancy and to establish the clonal relationship among different metastases in the context of androgen-deprived metastatic prostate cancer. Using whole-genome sequencing, we characterized multiple metastases arising from prostate tumours in ten patients. Integrated analyses of subclonal architecture revealed the patterns of metastatic spread in unprecedented detail. Metastasis-to-metastasis spread was found to be common, either through de novo monoclonal seeding of daughter metastases or, in five cases, through the transfer of multiple tumour clones between metastatic sites. Lesions affecting tumour suppressor genes usually occur as single events, whereas mutations in genes involved in androgen receptor signalling commonly involve multiple, convergent events in different metastases. Our results elucidate in detail the complex patterns of metastatic spread and further our understanding of the development of resistance to androgen-deprivation therapy in prostate cancer.


Assuntos
Linhagem da Célula , Metástase Neoplásica/patologia , Neoplasias da Próstata/patologia , Androgênios/deficiência , Linhagem da Célula/genética , Células Clonais/metabolismo , Células Clonais/patologia , Análise Mutacional de DNA , Progressão da Doença , Epigênese Genética , Genes Supressores de Tumor , Humanos , Masculino , Metástase Neoplásica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais/genética
3.
J Clin Pathol ; 68(3): 212-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25586381

RESUMO

AIMS: Assessing whether next-generation DNA sequencing (NGS) can be used to screen prostate cancer for multiple gene alterations in men routinely diagnosed with this disease and/or who are entered into clinical trials. Previous studies are limited and have reported only low success rates. METHODS: We marked areas of cancer on H&E-stained sections from formalin-fixed needle biopsies, and used these as templates to dissect cancer-rich tissue from adjacent unstained sections. DNA was prepared using a Qiagen protocol modified to maximise DNA yield. The DNA was screened simultaneously for mutations in 365 cancer-related genes using an Illumina HiSeq 2000 NGS platform. RESULTS: From 63 prostate cancers examined, 59(94%) of the samples yielded at least 30 ng of DNA, the minimum amount of DNA considered suitable for NGS analysis. Patients in the D'Amico high-risk group yielded an average of 1033 ng, intermediate-risk patients 401 ng, and low-risk patients 97 ng. NGS of eight samples selected from high-risk and intermediate-risk groups gave a median exon read depth of 962 and detected TMPRRS2-ERG fusions, as well as a variety of mutations including those in the SPOP, TP53, ATM, MEN1, NBPF10, NCOR2, PIK3CB and MAP2K5 (MEK5) genes. CONCLUSIONS: Using the methods presented here, NGS technologies can be used to screen a high proportion of patients with prostate cancer for mutations in cancer-related genes in tissue samples opening up its general use in the context of clinical trials or routine diagnosis.


Assuntos
Biomarcadores Tumorais/genética , Análise Mutacional de DNA/métodos , Fixadores , Formaldeído , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Neoplasias da Próstata/genética , Fixação de Tecidos/métodos , Idoso , Biomarcadores Tumorais/sangue , Biópsia por Agulha Fina , Predisposição Genética para Doença , Humanos , Calicreínas/sangue , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Fenótipo , Valor Preditivo dos Testes , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Medição de Risco , Fatores de Risco
4.
Nat Genet ; 47(4): 367-372, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25730763

RESUMO

Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.


Assuntos
Evolução Clonal/genética , Análise Mutacional de DNA , Neoplasias Primárias Múltiplas/genética , Próstata/citologia , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Estudos de Casos e Controles , Linhagem da Célula/genética , Células Clonais/patologia , Humanos , Masculino , Mutação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA