Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 89(2): 1254-66, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25392217

RESUMO

UNLABELLED: The mosquito-borne disease dengue (DEN) is caused by four serologically and genetically related viruses, termed DENV-1 to DENV-4. Infection with one DENV usually leads to acute illness and results in lifelong homotypic immunity, but individuals remain susceptible to infection by the other three DENVs. The lack of a small-animal model that mimics systemic DEN disease without neurovirulence has been an obstacle, but DENV-2 models that resemble human disease have been recently developed in AG129 mice (deficient in interferon alpha/beta and interferon gamma receptor signaling). However, comparable DENV-1, -3, and -4 models have not been developed. We utilized a non-mouse-adapted DENV-3 Thai human isolate to develop a lethal infection model in AG129 mice. Intraperitoneal inoculation of six to eight-week-old animals with strain C0360/94 led to rapid, fatal disease. Lethal C0360/94 infection resulted in physical signs of illness, high viral loads in the spleen, liver, and large intestine, histological changes in the liver and spleen tissues, and increased serum cytokine levels. Importantly, the animals developed vascular leakage, thrombocytopenia, and leukopenia. Overall, we have developed a lethal DENV-3 murine infection model, with no evidence of neurotropic disease based on a non-mouse-adapted human isolate, which can be used to investigate DEN pathogenesis and to evaluate candidate vaccines and antivirals. This suggests that murine models utilizing non-mouse-adapted isolates can be obtained for all four DENVs. IMPORTANCE: Dengue (DEN) is a mosquito-borne disease caused by four DENV serotypes (DENV-1, -2, -3, and -4) that have no treatments or vaccines. Primary infection with one DENV usually leads to acute illness followed by lifelong homotypic immunity, but susceptibility to infection by the other three DENVs remains. Therefore, a vaccine needs to protect from all four DENVs simultaneously. To date a suitable animal model to mimic systemic human illness exists only for DENV-2 in immunocompromised mice using passaged viruses; however, models are still needed for the remaining serotypes. This study describes establishment of a lethal systemic DENV-3 infection model with a human isolate in immunocompromised mice and is the first report of lethal infection by a nonadapted clinical DENV isolate without evidence of neurological disease. Our DENV-3 model provides a relevant platform to test DEN vaccines and antivirals.


Assuntos
Vírus da Dengue/crescimento & desenvolvimento , Dengue/patologia , Dengue/virologia , Modelos Animais de Doenças , Estruturas Animais/patologia , Estruturas Animais/virologia , Animais , Dengue/imunologia , Vírus da Dengue/imunologia , Camundongos Knockout , Receptores de Interferon/deficiência , Análise de Sobrevida
2.
J Virol ; 87(22): 12090-101, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23986602

RESUMO

Recognition of conserved pathogen-associated molecular patterns (PAMPs) by host pattern recognition receptors (PRRs) results in the activation of innate signaling pathways that drive the innate immune response and ultimately shape the adaptive immune response. RepliVAX WN, a single-cycle flavivirus (SCFV) vaccine candidate derived from West Nile virus (WNV), is intrinsically adjuvanted with multiple PAMPs and induces a vigorous anti-WNV humoral response. However, the innate mechanisms that link pattern recognition and development of vigorous antigen-specific B cell responses are not completely understood. Moreover, the roles of individual PRR signaling pathways in shaping the B cell response to this live attenuated SCFV vaccine have not been established. We examined and compared the role of TLR3- and MyD88-dependent signaling in the development of anti-WNV-specific antibody-secreting cell responses and memory B cell responses induced by RepliVAX WN. We found that MyD88 deficiency significantly diminished B cell responses by impairing B cell activation, development of germinal centers (GC), and the generation of long-lived plasma cells (LLPCs) and memory B cells (MBCs). In contrast, TLR3 deficiency had more effect on maintenance of GCs and development of LLPCs, whereas differentiation of MBCs was unaffected. Our data suggest that both TLR3- and MyD88-dependent signaling are involved in the intrinsic adjuvanting of RepliVAX WN and differentially contribute to the development of vigorous WNV-specific antibody and B cell memory responses following immunization with this novel SCFV vaccine.


Assuntos
Imunidade Adaptativa/imunologia , Linfócitos B/imunologia , Fator 88 de Diferenciação Mieloide/fisiologia , Receptor 3 Toll-Like/fisiologia , Febre do Nilo Ocidental/imunologia , Vacinas contra o Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia , Animais , Anticorpos Antivirais/sangue , Células Produtoras de Anticorpos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Citometria de Fluxo , Imunização , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Febre do Nilo Ocidental/prevenção & controle , Vacinas contra o Vírus do Nilo Ocidental/uso terapêutico
3.
J Immunol Methods ; 439: 1-7, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27659010

RESUMO

Genital infections with herpes simplex virus type 2 (HSV-2) are a source of considerable morbidity and are a health concern for newborns exposed to virus during vaginal delivery. Additionally, HSV-2 infection diminishes the integrity of the vaginal epithelium resulting in increased susceptibility of individuals to infection with other sexually transmitted pathogens. Understanding immune protection against HSV-2 primary infection and immune modulation of virus shedding events following reactivation of the virus from latency is important for the development of effective prophylactic and therapeutic vaccines. Although the murine model of HSV-2 infection is useful for understanding immunity following immunization, it is limited by the lack of spontaneous reactivation of HSV-2 from latency. Genital infection of guinea pigs with HSV-2 accurately models the disease of humans including the spontaneous reactivation of HSV-2 from latency and provides a unique opportunity to examine virus-host interactions during latency. Although the guinea pig represents an accurate model of many human infections, relatively few reagents are available to study the immunological response to infection. To analyze the cell-mediated immune response of guinea pigs at extended periods of time after establishment of HSV-2 latency, we have modified flow-cytometry based proliferation assays and IFN-γ ELISPOT assays to detect and quantify HSV-specific cell-mediated responses during latent infection of guinea pigs. Here we demonstrate that a combination of proliferation and ELISPOT assays can be used to quantify and characterize effecter function of virus-specific immune memory responses during HSV-latency.


Assuntos
ELISPOT , Citometria de Fluxo/métodos , Herpes Genital/imunologia , Herpesvirus Humano 2/imunologia , Imunidade Celular , Ativação Linfocitária , Linfócitos T/imunologia , Latência Viral , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Cobaias , Herpes Genital/metabolismo , Herpes Genital/virologia , Herpesvirus Humano 2/patogenicidade , Interações Hospedeiro-Patógeno , Interferon gama/imunologia , Interferon gama/metabolismo , Linfócitos T/metabolismo , Linfócitos T/virologia , Fatores de Tempo , Ativação Viral
4.
PLoS One ; 9(12): e114652, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25485971

RESUMO

Despite its importance in modulating HSV-2 pathogenesis, the nature of tissue-resident immune memory to HSV-2 is not completely understood. We used genital HSV-2 infection of guinea pigs to assess the type and location of HSV-specific memory cells at peripheral sites of HSV-2 infection. HSV-specific antibody-secreting cells were readily detected in the spleen, bone marrow, vagina/cervix, lumbosacral sensory ganglia, and spinal cord of previously-infected animals. Memory B cells were detected primarily in the spleen and to a lesser extent in bone marrow but not in the genital tract or neural tissues suggesting that the HSV-specific antibody-secreting cells present at peripheral sites of HSV-2 infection represented persisting populations of plasma cells. The antibody produced by these cells isolated from neural tissues of infected animals was functionally relevant and included antibodies specific for HSV-2 glycoproteins and HSV-2 neutralizing antibodies. A vigorous IFN-γ-secreting T cell response developed in the spleen as well as the sites of HSV-2 infection in the genital tract, lumbosacral ganglia and spinal cord following acute HSV-2 infection. Additionally, populations of HSV-specific tissue-resident memory T cells were maintained at these sites and were readily detected up to 150 days post HSV-2 infection. Unlike the persisting plasma cells, HSV-specific memory T cells were also detected in uterine tissue and cervicothoracic region of the spinal cord and at low levels in the cervicothoracic ganglia. Both HSV-specific CD4+ and CD8+ resident memory cell subsets were maintained long-term in the genital tract and sensory ganglia/spinal cord following HSV-2 infection. Together these data demonstrate the long-term maintenance of both humoral and cellular arms of the adaptive immune response at the sites of HSV-2 latency and virus shedding and highlight the utility of the guinea pig infection model to investigate tissue-resident memory in the setting of HSV-2 latency and spontaneous reactivation.


Assuntos
Células Produtoras de Anticorpos/imunologia , Linfócitos T CD4-Positivos/imunologia , Herpes Genital/imunologia , Herpesvirus Humano 2/imunologia , Memória Imunológica/imunologia , Eliminação de Partículas Virais/imunologia , Animais , Células Cultivadas , Chlorocebus aethiops , Feminino , Citometria de Fluxo , Cobaias , Herpes Genital/virologia , Especificidade de Órgãos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA