Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.559
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 162(6): 1365-78, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26359988

RESUMO

The cytokine TWEAK and its cognate receptor Fn14 are members of the TNF/TNFR superfamily and are upregulated in tumors. We found that Fn14, when expressed in tumors, causes cachexia and that antibodies against Fn14 dramatically extended lifespan by inhibiting tumor-induced weight loss although having only moderate inhibitory effects on tumor growth. Anti-Fn14 antibodies prevented tumor-induced inflammation and loss of fat and muscle mass. Fn14 signaling in the tumor, rather than host, is responsible for inducing this cachexia because tumors in Fn14- and TWEAK-deficient hosts developed cachexia that was comparable to that of wild-type mice. These results extend the role of Fn14 in wound repair and muscle development to involvement in the etiology of cachexia and indicate that Fn14 antibodies may be a promising approach to treat cachexia, thereby extending lifespan and improving quality of life for cancer patients.


Assuntos
Caquexia/tratamento farmacológico , Neoplasias/patologia , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/administração & dosagem , Atrofia/tratamento farmacológico , Caquexia/patologia , Morte Celular , Neoplasias do Colo/tratamento farmacológico , Citocina TWEAK , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Desenvolvimento Muscular , Neoplasias/metabolismo , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Receptor de TWEAK , Fatores de Necrose Tumoral/metabolismo
2.
Immunity ; 46(4): 675-689, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28423341

RESUMO

Activated T cells produce reactive oxygen species (ROS), which trigger the antioxidative glutathione (GSH) response necessary to buffer rising ROS and prevent cellular damage. We report that GSH is essential for T cell effector functions through its regulation of metabolic activity. Conditional gene targeting of the catalytic subunit of glutamate cysteine ligase (Gclc) blocked GSH production specifically in murine T cells. Gclc-deficient T cells initially underwent normal activation but could not meet their increased energy and biosynthetic requirements. GSH deficiency compromised the activation of mammalian target of rapamycin-1 (mTOR) and expression of NFAT and Myc transcription factors, abrogating the energy utilization and Myc-dependent metabolic reprogramming that allows activated T cells to switch to glycolysis and glutaminolysis. In vivo, T-cell-specific ablation of murine Gclc prevented autoimmune disease but blocked antiviral defense. The antioxidative GSH pathway thus plays an unexpected role in metabolic integration and reprogramming during inflammatory T cell responses.


Assuntos
Glutamato-Cisteína Ligase/deficiência , Glutationa/metabolismo , Inflamação/metabolismo , Linfócitos T/metabolismo , Animais , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Metabolismo Energético/genética , Glutamato-Cisteína Ligase/genética , Glutamina/metabolismo , Glicólise , Immunoblotting , Inflamação/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo
3.
EMBO Rep ; 25(4): 1835-1858, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429578

RESUMO

Cancer cachexia is a tumour-induced wasting syndrome, characterised by extreme loss of skeletal muscle. Defective mitochondria can contribute to muscle wasting; however, the underlying mechanisms remain unclear. Using a Drosophila larval model of cancer cachexia, we observed enlarged and dysfunctional muscle mitochondria. Morphological changes were accompanied by upregulation of beta-oxidation proteins and depletion of muscle glycogen and lipid stores. Muscle lipid stores were also decreased in Colon-26 adenocarcinoma mouse muscle samples, and expression of the beta-oxidation gene CPT1A was negatively associated with muscle quality in cachectic patients. Mechanistically, mitochondrial defects result from reduced muscle insulin signalling, downstream of tumour-secreted insulin growth factor binding protein (IGFBP) homologue ImpL2. Strikingly, muscle-specific inhibition of Forkhead box O (FOXO), mitochondrial fusion, or beta-oxidation in tumour-bearing animals preserved muscle integrity. Finally, dietary supplementation with nicotinamide or lipids, improved muscle health in tumour-bearing animals. Overall, our work demonstrates that muscle FOXO, mitochondria dynamics/beta-oxidation and lipid utilisation are key regulators of muscle wasting in cancer cachexia.


Assuntos
Neoplasias do Colo , Proteínas de Drosophila , Insulinas , Camundongos , Animais , Humanos , Caquexia/etiologia , Caquexia/metabolismo , Drosophila/metabolismo , Dinâmica Mitocondrial , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Neoplasias do Colo/metabolismo , Insulinas/metabolismo , Lipídeos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
4.
Circulation ; 149(17): 1341-1353, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38235580

RESUMO

BACKGROUND: Cardiolipin is a mitochondrial-specific phospholipid that maintains integrity of the electron transport chain (ETC) and plays a central role in myocardial ischemia/reperfusion injury. Tafazzin is an enzyme that is required for cardiolipin maturation. Venoarterial extracorporeal membrane oxygenation (VA-ECMO) use to provide hemodynamic support for acute myocardial infarction has grown exponentially, is associated with poor outcomes, and is under active clinical investigation, yet the mechanistic effect of VA-ECMO on myocardial damage in acute myocardial infarction remains poorly understood. We hypothesized that VA-ECMO acutely depletes myocardial cardiolipin and exacerbates myocardial injury in acute myocardial infarction. METHODS: We examined cardiolipin and tafazzin levels in human subjects with heart failure and healthy swine exposed to VA-ECMO and used a swine model of closed-chest myocardial ischemia/reperfusion injury to evaluate the effect of VA-ECMO on cardiolipin expression, myocardial injury, and mitochondrial function. RESULTS: Cardiolipin and tafazzin levels are significantly reduced in the left ventricles of individuals requiring VA-ECMO compared with individuals without VA-ECMO before heart transplantation. Six hours of exposure to VA-ECMO also decreased left ventricular levels of cardiolipin and tafazzin in healthy swine compared with sham controls. To explore whether cardiolipin depletion by VA-ECMO increases infarct size, we performed left anterior descending artery occlusion for a total of 120 minutes followed by 180 minutes of reperfusion in adult swine in the presence and absence of MTP-131, an amphipathic molecule that interacts with cardiolipin to stabilize the inner mitochondrial membrane. Compared with reperfusion alone, VA-ECMO activation beginning after 90 minutes of left anterior descending artery occlusion increased infarct size (36±8% versus 48±7%; P<0.001). VA-ECMO also decreased cardiolipin and tafazzin levels, disrupted mitochondrial integrity, reduced electron transport chain function, and promoted oxidative stress. Compared with reperfusion alone or VA-ECMO before reperfusion, delivery of MTP-131 before VA-ECMO activation reduced infarct size (22±8%; P=0.03 versus reperfusion alone and P<0.001 versus VA-ECMO alone). MTP-131 restored cardiolipin and tafazzin levels, stabilized mitochondrial function, and reduced oxidative stress in the left ventricle. CONCLUSIONS: We identified a novel mechanism by which VA-ECMO promotes myocardial injury and further identify cardiolipin as an important target of therapy to reduce infarct size and to preserve mitochondrial function in the setting of VA-ECMO for acute myocardial infarction.

5.
FASEB J ; 38(3): e23459, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38329343

RESUMO

Wound healing is facilitated by neoangiogenesis, a complex process that is essential to tissue repair in response to injury. MicroRNAs are small, noncoding RNAs that can regulate the wound healing process including stimulation of impaired angiogenesis that is associated with type-2 diabetes (T2D). Expression of miR-409-3p was significantly increased in the nonhealing skin wounds of patients with T2D compared to the non-wounded normal skin, and in the skin of a murine model with T2D. In response to high glucose, neutralization of miR-409-3p markedly improved EC growth and migration in human umbilical vein endothelial cells (HUVECs), promoted wound closure and angiogenesis as measured by increased CD31 in human skin organoids, while overexpression attenuated EC angiogenic responses. Bulk mRNA-Seq transcriptomic profiling revealed BTG2 as a target of miR-409-3p, where overexpression of miR-409-3p significantly decreased BTG2 mRNA and protein expression. A 3' untranslated region (3'-UTR) luciferase assay of BTG2 revealed decreased luciferase activity with overexpression of miR-409-3p, while inhibition had opposite effects. Mechanistically, in response to high glucose, miR-409-3p deficiency in ECs resulted in increased mTOR phosphorylation, meanwhile BTG-anti-proliferation factor 2 (BTG2) silencing significantly decreased mTOR phosphorylation. Endothelial-specific and tamoxifen-inducible miR-409-3p knockout mice (MiR-409IndECKO ) with hyperglycemia that underwent dorsal skin wounding showed significant improvement of wound closure, increased blood flow, granulation tissue thickness (GTT), and CD31 that correlated with increased BTG2 expression. Taken together, our results show that miR-409-3p is a critical mediator of impaired angiogenesis in diabetic skin wound healing.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas Imediatamente Precoces , MicroRNAs , Proteínas Supressoras de Tumor , Animais , Humanos , Camundongos , Angiogênese , Proliferação de Células/fisiologia , Diabetes Mellitus Tipo 2/genética , Glucose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Imediatamente Precoces/genética , Luciferases , Camundongos Obesos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , Serina-Treonina Quinases TOR , Proteínas Supressoras de Tumor/genética , Cicatrização/genética
6.
Circulation ; 148(11): 872-881, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37641966

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) can lead to advanced disease, defined herein as necessitating a durable left ventricular assist device or a heart transplant (LVAD/HT). DCM is known to have a genetic basis, but the association of rare variant genetics with advanced DCM has not been studied. METHODS: We analyzed clinical and genetic sequence data from patients enrolled between 2016 and 2021 in the US multisite DCM Precision Medicine Study, which was a geographically diverse, multiracial, multiethnic cohort. Clinical evaluation included standardized patient interview and medical record query forms. DCM severity was classified into 3 groups: patients with advanced disease with LVAD/HT; patients with an implantable cardioverter defibrillator (ICD) only; or patients with no ICD or LVAD/HT. Rare variants in 36 DCM genes were classified as pathogenic or likely pathogenic or variants of uncertain significance. Confounding factors we considered included demographic characteristics, lifestyle factors, access to care, DCM duration, and comorbidities. Crude and adjusted associations between DCM severity and rare variant genetic findings were assessed using multinomial models with generalized logit link. RESULTS: Patients' mean (SD) age was 51.9 (13.6) years; 42% were of African ancestry, 56% were of European ancestry, and 44% were female. Of 1198 patients, 347 had LVAD/HT, 511 had an ICD, and 340 had no LVAD/HT or ICD. The percentage of patients with pathogenic or likely pathogenic variants was 26.2%, 15.9%, and 15.0% for those with LVAD/HT, ICD only, or neither, respectively. After controlling for sociodemographic characteristics and comorbidities, patients with DCM with LVAD/HT were more likely than those without LVAD/HT or ICD to have DCM-related pathogenic or likely pathogenic rare variants (odds ratio, 2.3 [95% CI, 1.5-3.6]). The association did not differ by ancestry. Rare variant genetic findings were similar between patients with DCM with an ICD and those without LVAD/HT or ICD. CONCLUSIONS: Advanced DCM was associated with higher odds of rare variants in DCM genes adjudicated as pathogenic or likely pathogenic, compared with individuals with less severe DCM. This finding may help assess the risk of outcomes in management of patients with DCM and their at-risk family members. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03037632.


Assuntos
Cardiomiopatia Dilatada , Medicina de Precisão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , População Negra , Cardiomiopatia Dilatada/epidemiologia , Cardiomiopatia Dilatada/etnologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/terapia , Desfibriladores Implantáveis , Avaliação de Medicamentos , Adulto , Idoso , Brancos , Negro ou Afro-Americano , Estados Unidos/epidemiologia
7.
Circulation ; 147(17): 1281-1290, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36938756

RESUMO

BACKGROUND: Managing disease risk among first-degree relatives of probands diagnosed with a heritable disease is central to precision medicine. A critical component is often clinical screening, which is particularly important for conditions like dilated cardiomyopathy (DCM) that remain asymptomatic until severe disease develops. Nonetheless, probands are frequently ill-equipped to disseminate genetic risk information that motivates at-risk relatives to complete recommended clinical screening. An easily implemented remedy for this key issue has been elusive. METHODS: The DCM Precision Medicine Study developed Family Heart Talk, a booklet designed to help probands with DCM communicate genetic risk and the need for cardiovascular screening to their relatives. The effectiveness of the Family Heart Talk booklet in increasing cardiovascular clinical screening uptake among first-degree relatives was assessed in a multicenter, open-label, cluster-randomized, controlled trial. The primary outcome measured in eligible first-degree relatives was completion of screening initiated within 12 months after proband enrollment. Because probands randomized to the intervention received the booklet at the enrollment visit, eligible first-degree relatives were limited to those who were alive the day after proband enrollment and not enrolled on the same day as the proband. RESULTS: Between June 2016 and March 2020, 1241 probands were randomized (1:1) to receive Family Heart Talk (n=621) or not (n=620) within strata defined by site and self-identified race/ethnicity (non-Hispanic Black, non-Hispanic White, or Hispanic). Final analyses included 550 families (n=2230 eligible first-degree relatives) in the Family Heart Talk arm and 561 (n=2416) in the control arm. A higher percentage of eligible first-degree relatives completed screening in the Family Heart Talk arm (19.5% versus 16.0%), and the odds of screening completion among these first-degree relatives were higher in the Family Heart Talk arm after adjustment for proband randomization stratum, sex, and age quartile (odds ratio, 1.30 [1-sided 95% CI, 1.08-∞]). A prespecified subgroup analysis did not find evidence of heterogeneity in the adjusted intervention odds ratio across race/ethnicity strata (P=0.90). CONCLUSIONS: Family Heart Talk, a booklet that can be provided to patients with DCM by clinicians with minimal additional time investment, was effective in increasing cardiovascular clinical screening among first-degree relatives of these patients. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03037632.


Assuntos
Cardiomiopatia Dilatada , Humanos , Cardiomiopatia Dilatada/diagnóstico , Etnicidade , Família , Saúde da Família , Medição de Risco
8.
J Neurophysiol ; 131(6): 1188-1199, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691529

RESUMO

Prolonged inhibition of respiratory neural activity elicits a long-lasting increase in phrenic nerve amplitude once respiratory neural activity is restored. Such long-lasting facilitation represents a form of respiratory motor plasticity known as inactivity-induced phrenic motor facilitation (iPMF). Although facilitation also occurs in inspiratory intercostal nerve activity after diminished respiratory neural activity (iIMF), it is of shorter duration. Atypical PKC activity in the cervical spinal cord is necessary for iPMF and iIMF, but the site and specific isoform of the relevant atypical PKC are unknown. Here, we used RNA interference to test the hypothesis that the zeta atypical PKC isoform (PKCζ) within phrenic motor neurons is necessary for iPMF but PKCζ within intercostal motor neurons is unnecessary for transient iIMF. Intrapleural injections of siRNAs targeting PKCζ (siPKCζ) to knock down PKCζ mRNA within phrenic and intercostal motor neurons were made in rats. Control rats received a nontargeting siRNA (NTsi) or an active siRNA pool targeting a novel PKC isoform, PKCθ (siPKCθ), which is required for other forms of respiratory motor plasticity. Phrenic nerve burst amplitude and external intercostal (T2) electromyographic (EMG) activity were measured in anesthetized and mechanically ventilated rats exposed to 30 min of respiratory neural inactivity (i.e., neural apnea) created by modest hypocapnia (20 min) or a similar recording duration without neural apnea (time control). Phrenic burst amplitude was increased in rats treated with NTsi (68 ± 10% baseline) and siPKCθ (57 ± 8% baseline) 60 min after neural apnea vs. time control rats (-3 ± 3% baseline), demonstrating iPMF. In contrast, intrapleural siPKCζ virtually abolished iPMF (5 ± 4% baseline). iIMF was transient in all groups exposed to neural apnea; however, intrapleural siPKCζ attenuated iIMF 5 min after neural apnea (50 ± 21% baseline) vs. NTsi (97 ± 22% baseline) and siPKCθ (103 ± 20% baseline). Neural inactivity elevated the phrenic, but not intercostal, responses to hypercapnia, an effect that was blocked by siPKCζ. We conclude that PKCζ within phrenic motor neurons is necessary for long-lasting iPMF, whereas intercostal motor neuron PKCζ contributes to, but is not necessary for, transient iIMF.NEW & NOTEWORTHY We report important new findings concerning the mechanisms regulating a form of spinal neuroplasticity elicited by prolonged inhibition of respiratory neural activity, inactivity-induced phrenic motor facilitation (iPMF). We demonstrate that the atypical PKC isoform PKCζ within phrenic motor neurons is necessary for long-lasting iPMF, whereas intercostal motor neuron PKCζ contributes to, but is not necessary for, transient inspiratory intercostal facilitation. Our findings are novel and advance our understanding of mechanisms contributing to phrenic motor plasticity.


Assuntos
Neurônios Motores , Nervo Frênico , Proteína Quinase C , Ratos Sprague-Dawley , Animais , Nervo Frênico/fisiologia , Proteína Quinase C/metabolismo , Proteína Quinase C/fisiologia , Neurônios Motores/fisiologia , Masculino , Ratos , Plasticidade Neuronal/fisiologia
9.
J Biomol NMR ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787508

RESUMO

A streamlined one-day protocol is described to produce isotopically methyl-labeled protein with high levels of deuterium for NMR studies. Using this protocol, the D2O and 2H-glucose content of the media and protonation level of ILV labeling precursors (ketobutyrate and ketovalerate) were varied. The relaxation rate of the multiple-quantum (MQ) state that is present during the HMQC-TROSY pulse sequence was measured for different labeling schemes and this rate was used to predict upper limits of molecular weights for various labeling schemes. The use of deuterated solvents (D2O) or deuterated glucose is not required to obtain 1H-13C correlated NMR spectra of a 50 kDa homodimeric protein that are suitable for assignment by mutagenesis. High quality spectra of 100-150 kDa proteins, suitable for most applications, can be obtained without the use of deuterated glucose. The proton on the ß-position of ketovalerate appears to undergo partial exchange with deuterium under the growth conditions used in this study.

10.
Ann Surg Oncol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520583

RESUMO

BACKGROUND: Limb-sparing resections of thigh soft tissue sarcomas (STSs) can result in adverse outcomes. Identifying preoperative predictors for wound healing complications, tumor recurrence, and mortality is crucial for informed reconstructive decision-making. We hypothesized that preoperative measurements of thigh and tumor dimensions could serve as reliable indicators for postoperative complications, recurrence, and death. PATIENTS AND METHODS: In this retrospective cohort study conducted from March 2016 to December 2021, we analyzed patients undergoing thigh STS excisions followed by reconstruction. Preoperative magnetic resonance imaging or computed tomography scans provided necessary thigh and tumor dimensions. Univariate and multivariate regression assessed relationships between these dimensions and postoperative outcomes, including complications, recurrence, and death. RESULTS: Upon the analysis of 123 thighs, we found thigh width to be highly predictive of postoperative complications, even surpassing body mass index (BMI) and retaining significance in multivariate regression [odds ratio (OR) 1.19; 95% CI 1.03-1.39; p = 0.03]. Sarcoma-to-thigh width and thickness ratios predicted STS recurrence, with the thickness ratio retaining significance in multivariate regression (OR 1.03; 95% CI 1.001-1.05; p = 0.041). Notably, greater thigh thickness was independently protective against mortality in multivariate analysis (OR 0.80; 95% CI 0.65-0.98; p = 0.030). CONCLUSIONS: Thigh width outperformed BMI in association with postoperative complications. This may create an opportunity for intervention, where weight loss can play a role during the neoadjuvant therapy period to potentially reduce complications. Sarcoma-to-thigh width and thickness ratios, particularly the latter, hold substantial predictive value in terms of STS recurrence. Moreover, thigh thickness is an independent predictor of survival.

11.
Ann Surg Oncol ; 31(6): 4138-4147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38396039

RESUMO

BACKGROUND: Although social vulnerability has been associated with worse postoperative and oncologic outcomes in other cancer types, these effects have not been characterized in patients with soft tissue sarcoma. This study evaluated the association of social vulnerability and oncologic outcomes. METHODS: The authors conducted a single-institution cohort study of adult patients with primary and locally recurrent extremity or truncal soft tissue sarcoma undergoing resection between January 2016 and December 2021. The social vulnerability index (SVI) was measured on a low (SVI 1-39%, least vulnerable) to high (60-100%, most vulnerable) SVI scale. The association of SVI with overall survival (OS) and recurrence-free survival (RFS) was evaluated by Kaplan-Meier analysis and Cox proportional hazard regression. RESULTS: The study identified 577 patients. The median SVI was 44 (interquartile range [IQR], 19-67), with 195 patients categorized as high SVI and 265 patients as low SVI. The median age, tumor size, histologic subtype, grade, comorbidities, stage, follow-up time, and perioperative chemotherapy and radiation utilization were similar between the high and low SVI cohorts. The patients with high SVI had worse OS (p = 0.07) and RFS (p = 0.016) than the patients with low SVI. High SVI was independently associated with shorter RFS in the multivariate analysis (hazard ratio, 1.64; 95% confidence interval, 1.06-2.54) but not with OS (HR, 1.47; 95% CI 0.84-2.56). CONCLUSION: High community-level social vulnerability appears to be independently associated with worse RFS for patients undergoing resection of extremity and truncal soft tissue sarcoma. The effect of patient and community-level social risk factors should be considered in the treatment of patients with extremity sarcoma.


Assuntos
Extremidades , Recidiva Local de Neoplasia , Sarcoma , Humanos , Feminino , Masculino , Sarcoma/cirurgia , Sarcoma/mortalidade , Sarcoma/patologia , Pessoa de Meia-Idade , Extremidades/cirurgia , Extremidades/patologia , Taxa de Sobrevida , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Recidiva Local de Neoplasia/mortalidade , Idoso , Seguimentos , Prognóstico , Adulto , Populações Vulneráveis , Tronco/cirurgia , Tronco/patologia , Estudos Retrospectivos , Fatores de Risco , Neoplasias de Tecidos Moles/cirurgia , Neoplasias de Tecidos Moles/mortalidade , Neoplasias de Tecidos Moles/patologia
12.
Exp Physiol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551996

RESUMO

During mild or moderate exercise, alveolar ventilation increases in direct proportion to metabolic rate, regulating arterial CO2 pressure near resting levels. Mechanisms giving rise to the hyperpnoea of exercise are unsettled despite over a century of investigation. In the past three decades, neuroscience has advanced tremendously, raising optimism that the 'exercise hyperpnoea dilemma' can finally be solved. In this review, new perspectives are offered in the hope of stimulating original ideas based on modern neuroscience methods and current understanding. We first describe the ventilatory control system and the challenge exercise places upon blood-gas regulation. We highlight relevant system properties, including feedforward, feedback and adaptive (i.e., plasticity) control of breathing. We then elaborate a seldom explored hypothesis that the exercise ventilatory response continuously adapts (learns and relearns) throughout life and ponder if the memory 'engram' encoding the feedforward exercise ventilatory stimulus could reside within the cerebellum. Our hypotheses are based on accumulating evidence supporting the cerebellum's role in motor learning and the numerous direct and indirect projections from deep cerebellar nuclei to brainstem respiratory neurons. We propose that cerebellar learning may be obligatory for the accurate and adjustable exercise hyperpnoea capable of tracking changes in life conditions/experiences, and that learning arises from specific cerebellar microcircuits that can be interrogated using powerful techniques such as optogenetics and chemogenetics. Although this review is speculative, we consider it essential to reframe our perspective if we are to solve the till-now intractable exercise hyperpnoea dilemma.

13.
Ophthalmic Physiol Opt ; 44(1): 17-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921119

RESUMO

PURPOSE: The accurate diagnosis of age-related macular degeneration (AMD) represents an important step in delaying and preventing vision loss and achieving optimal patient care. Therefore, this pilot study aimed to estimate the diagnostic accuracy of community optometrists for identifying AMD using colour fundus photographs (CFPs) to support sample size calculations for subsequent definitive studies. METHODS: Five practising community optometrists were invited to classify a total of 1023 CFPs for the (1) presence of AMD, and, if applicable, (2) stage of AMD (early/intermediate/late geographic atrophy/late neovascular AMD). Diagnosis by referral centre clinicians formed the reference standard. Diagnostic accuracy was assessed by the area under the receiver operating characteristic curve (aROC). Sensitivity, specificity, positive and negative predictive values were also calculated. RESULTS: Of the 1023 CFPs included in the study, 226 images were of AMD and 797 images were of other ocular conditions or no abnormal findings. Participating community optometrists had a mean (SD) age of 30.2 (8.9) years, 60.0% (3/5) were female and the mean number of years practising in primary eye care was 5.4 (5.4) years. Community optometrists demonstrated excellent performance for diagnosing AMD, with an aROC of 0.86 (95% CI 0.83 to 0.89), sensitivity of 84.5% (95% CI 79.1 to 89.0) and specificity of 88.0% (95% CI 85.5 to 90.1). The aROC (95% CI) for diagnosing early, intermediate, late geographic atrophy and late neovascular AMD was 0.82 (0.73 to 0.91), 0.76 (0.72 to 0.81), 0.69 (0.49 to 0.90) and 0.55 (0.34 to 0.75), respectively. CONCLUSIONS: These results justify the need for an appropriately powered definitive study to assess community clinicians' diagnostic accuracy for AMD.


Assuntos
Atrofia Geográfica , Optometristas , Degeneração Macular Exsudativa , Humanos , Feminino , Adulto , Masculino , Projetos Piloto , Atrofia Geográfica/diagnóstico , Inibidores da Angiogênese , Cor , Acuidade Visual , Fator A de Crescimento do Endotélio Vascular
14.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627403

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Distrofina/genética , Sulfeto de Hidrogênio/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Morfolinas/farmacologia , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular Animal/tratamento farmacológico , Compostos Organofosforados/farmacologia , Compostos Organotiofosforados/farmacologia , Tionas/farmacologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Distrofina/deficiência , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Humanos , Sulfeto de Hidrogênio/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos mdx , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfolinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Compostos Organofosforados/metabolismo , Compostos Organotiofosforados/metabolismo , Prednisona/farmacologia , Sirtuínas/genética , Sirtuínas/metabolismo , Tionas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Utrofina/deficiência , Utrofina/genética
15.
Ann Plast Surg ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38920187

RESUMO

INTRODUCTION: Soft tissue sarcomas (STSs) are rare and diverse primary malignant tumors that comprise approximately 1% of all malignancies. Misdiagnoses and unplanned excisions of STSs are common due to the tumor's rarity, leading to secondary tumor bed excisions (TBEs). Reconstructive outcomes for TBEs remain poorly understood, prompting this study to address the knowledge gap and inform preoperative discussions. METHODS: This was a retrospective cohort study of patients who underwent STS excisions at a quaternary cancer center. Patients were categorized into mass excision (ME) and TBE groups. Reconstructive approaches were divided into simple (primary closure, complex repair, skin grafts, local flaps) and advanced (pedicled or free flaps). The groups were compared for postoperative outcomes, including complications, recurrence, and death. RESULTS: When simple reconstructive techniques were used, TBEs exhibited higher rates of overall and major complications, whereas MEs had higher rates of overall and minor complications. Intergroup analysis revealed that with simple reconstruction, rates of overall and major complications were higher in TBEs than in MEs, and rates of minor complications were higher in MEs than in TBEs. Regression analyses revealed that simple reconstruction of TBEs had 90% and 180% higher odds of major complications and reoperation compared to simple reconstruction of MEs (P < 0.05). CONCLUSION: TBEs, despite their smaller size, exhibited a heightened susceptibility to overall and major complications, challenging the notion that simpler techniques suffice in these cases. Our findings encourage the consideration of advanced reconstructive techniques for TBEs that may seem amenable to simple reconstructive techniques.

16.
Am J Physiol Cell Physiol ; 324(2): C205-C221, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534500

RESUMO

Cancer cachexia is common in many cancers and the loss of skeletal muscle mass compromises the response to therapies and quality of life. A contributing mechanism is oxidative stress and compounds able to attenuate it may be protective. Sulforaphane (SFN), a natural antioxidant in cruciferous vegetables, activates nuclear factor erythroid 2-related factor 2 (Nrf2) signaling to decrease oxidative stress. Although SFN has potential as a cancer therapeutic, whether it can attenuate muscle wasting in the absence or presence of chemotherapy is unknown. In healthy C2C12 myotubes, SFN administration for 48 h induced hypertrophy through increased myoblast fusion via Nrf2 and ERK signaling. To determine whether SFN could attenuate wasting induced by cancer cells, myotubes were cocultured with or without Colon-26 (C-26) cancer cells for 48 h and treated with 5-fluorouracil (5-FU, 5 µM) or vehicle (DMSO). SFN (10 µM) or DMSO was added for the final 24 h. Coculture with cancer cells in the absence and presence of 5-FU reduced myotube width by ∼30% (P < 0.001) and ∼20% (P < 0.01), respectively, which was attenuated by SFN (P < 0.05). Exposure to C-26 conditioned media reduced myotube width by 15% (P < 0.001), which was attenuated by SFN. Western immunoblotting and qRT-PCR confirmed activation of Nrf2 signaling and antioxidant genes. Coadministration of Nrf2 inhibitors (ML-385) or MEK inhibitors (PD184352) revealed that SFN's attenuation of atrophy was blocked by ERK inhibition. These data support the chemoprotective and antioxidative function of SFN in myotubes, highlighting its therapeutic potential for cancer-related muscle wasting.


Assuntos
Antioxidantes , Neoplasias , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Dimetil Sulfóxido/metabolismo , Qualidade de Vida , Fibras Musculares Esqueléticas/metabolismo , Estresse Oxidativo , Atrofia Muscular/patologia , Neoplasias/metabolismo , Fluoruracila/farmacologia
17.
J Neurophysiol ; 129(4): 799-806, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883762

RESUMO

Inflammation undermines neuroplasticity, including serotonin-dependent phrenic long-term facilitation (pLTF) following moderate acute intermittent hypoxia (mAIH: 3, 5-min episodes, arterial Po2: 40-50 mmHg; 5-min intervals). Mild inflammation elicited by a low dose of the TLR-4 receptor agonist, lipopolysaccharide (LPS; 100 µg/kg, ip), abolishes mAIH-induced pLTF by unknown mechanisms. In the central nervous system, neuroinflammation primes glia, triggering ATP release and extracellular adenosine accumulation. As spinal adenosine 2 A (A2A) receptor activation impairs mAIH-induced pLTF, we hypothesized that spinal adenosine accumulation and A2A receptor activation are necessary in the mechanism whereby LPS impairs pLTF. We report that 24 h after LPS injection in adult male Sprague Dawley rats: 1) adenosine levels increase in ventral spinal segments containing the phrenic motor nucleus (C3-C5; P = 0.010; n = 7/group) and 2) cervical spinal A2A receptor inhibition (MSX-3, 10 µM, 12 µL intrathecal) rescues mAIH-induced pLTF. In LPS vehicle-treated rats (saline, ip), MSX-3 enhanced pLTF versus controls (LPS: 110 ± 16% baseline; controls: 53 ± 6%; P = 0.002; n = 6/group). In LPS-treated rats, pLTF was abolished as expected (4 ± 6% baseline; n = 6), but intrathecal MSX-3 restored pLTF to levels equivalent to MSX-3-treated control rats (120 ± 14% baseline; P < 0.001; n = 6; vs. LPS controls with MSX-3: P = 0.539). Thus, inflammation abolishes mAIH-induced pLTF by a mechanism that requires increased spinal adenosine levels and A2A receptor activation. As repetitive mAIH is emerging as a treatment to improve breathing and nonrespiratory movements in people with spinal cord injury or ALS, A2A inhibition may offset undermining effects of neuroinflammation associated with these neuromuscular disorders.NEW & NOTEWORTHY Mild inflammation undermines motor plasticity elicited by mAIH. In a model of mAIH-induced respiratory motor plasticity (phrenic long-term facilitation; pLTF), we report that inflammation induced by low-dose lipopolysaccharide undermines mAIH-induced pLTF by a mechanism requiring increased cervical spinal adenosine and adenosine 2 A receptor activation. This finding advances the understanding of mechanisms impairing neuroplasticity, potentially undermining the ability to compensate for the onset of lung/neural injury or to harness mAIH as a therapeutic modality.


Assuntos
Lipopolissacarídeos , Potenciação de Longa Duração , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Lipopolissacarídeos/farmacologia , Adenosina/farmacologia , Doenças Neuroinflamatórias , Hipóxia , Inflamação , Nervo Frênico/fisiologia , Medula Espinal
18.
J Neurophysiol ; 129(2): 455-464, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695529

RESUMO

Moderate acute intermittent hypoxia (mAIH) elicits a form of phrenic motor plasticity known as phrenic long-term facilitation (pLTF), which requires spinal 5-HT2 receptor activation, ERK/MAP kinase signaling, and new brain-derived neurotrophic factor (BDNF) synthesis. New BDNF protein activates TrkB receptors that normally signal through PKCθ to elicit pLTF. Phrenic motor plasticity elicited by spinal drug administration (e.g., BDNF) is referred to by a more general term: phrenic motor facilitation (pMF). Although mild systemic inflammation elicited by a low lipopolysaccharide (LPS) dose (100 µg/kg; 24 h prior) undermines mAIH-induced pLTF upstream from BDNF protein synthesis, it augments pMF induced by spinal BDNF administration through unknown mechanisms. Here, we tested the hypothesis that mild inflammation shifts BDNF/TrkB signaling from PKCθ to alternative pathways that enhance pMF. We examined the role of three known signaling pathways associated with TrkB (MEK/ERK MAP kinase, PI3 kinase/Akt, and PKCθ) in BDNF-induced pMF in anesthetized, paralyzed, and ventilated Sprague Dawley rats 24 h post-LPS. Spinal PKCθ inhibitor (TIP) attenuated early BDNF-induced pMF (≤30 min), with minimal effect 60-90 min post-BDNF injection. In contrast, MEK inhibition (U0126) abolished BDNF-induced pMF at 60 and 90 min. PI3K/Akt inhibition (PI-828) had no effect on BDNF-induced pMF at any time. Thus, whereas BDNF-induced pMF is exclusively PKCθ-dependent in normal rats, MEK/ERK is recruited by neuroinflammation to sustain, and even augment downstream plasticity. Because AIH is being developed as a therapeutic modality to restore breathing in people living with multiple neurological disorders, it is important to understand how inflammation, a common comorbidity in many traumatic or degenerative central nervous system disorders, impacts phrenic motor plasticity.NEW & NOTEWORTHY We demonstrate that even mild systemic inflammation shifts signaling mechanisms giving rise to BDNF-induced phrenic motor plasticity. This finding has important experimental, biological, and translational implications, particularly since BDNF-dependent spinal plasticity is being translated to restore breathing and nonrespiratory movements in diverse clinical disorders, such as spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS).


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Medula Espinal , Ratos , Animais , Ratos Sprague-Dawley , Medula Espinal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos , Hipóxia/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Nervo Frênico/fisiologia , Plasticidade Neuronal
19.
EMBO J ; 38(24): e102578, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31381180

RESUMO

Exercise stimulates cellular and physiological adaptations that are associated with widespread health benefits. To uncover conserved protein phosphorylation events underlying this adaptive response, we performed mass spectrometry-based phosphoproteomic analyses of skeletal muscle from two widely used rodent models: treadmill running in mice and in situ muscle contraction in rats. We overlaid these phosphoproteomic signatures with cycling in humans to identify common cross-species phosphosite responses, as well as unique model-specific regulation. We identified > 22,000 phosphosites, revealing orthologous protein phosphorylation and overlapping signaling pathways regulated by exercise. This included two conserved phosphosites on stromal interaction molecule 1 (STIM1), which we validate as AMPK substrates. Furthermore, we demonstrate that AMPK-mediated phosphorylation of STIM1 negatively regulates store-operated calcium entry, and this is beneficial for exercise in Drosophila. This integrated cross-species resource of exercise-regulated signaling in human, mouse, and rat skeletal muscle has uncovered conserved networks and unraveled crosstalk between AMPK and intracellular calcium flux.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteômica/métodos , Molécula 1 de Interação Estromal/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Drosophila , Feminino , Humanos , Masculino , Proteínas de Membrana , Camundongos , Músculo Esquelético/metabolismo , Fosforilação , Conformação Proteica , Ratos , Ratos Wistar , Transdução de Sinais , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética
20.
Immunol Cell Biol ; 101(2): 130-141, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36318273

RESUMO

Protein kinase D (PKD) is a serine/threonine kinase family with three isoforms (PKD1-3) that are expressed in most cells and implicated in a wide array of signaling pathways, including cell growth, differentiation, transcription, secretion, polarization and actin turnover. Despite growing interest in PKD, relatively little is known about the role of PKD in immune responses. We recently published that inhibiting PKD limits proinflammatory cytokine secretion and leukocyte accumulation in mouse models of viral infection, and that PKD3 is highly expressed in the murine lung and immune cell populations. Here we focus on the immune-related phenotypes of PKD3 knockout mice. We report that PKD3 is necessary for maximal neutrophil accumulation in the lung following challenge with inhaled polyinosinic:polycytidylic acid, a double-stranded RNA, as well as following influenza A virus infection. Using reciprocal bone marrow chimeras, we found that PKD3 is required in the hematopoietic compartment for optimal neutrophil migration to the lung. Ex vivo transwell and chemokinesis assays confirmed that PKD3-/- neutrophils possess an intrinsic motility defect, partly because of reduced surface expression of CD18, which is critical for leukocyte migration. Finally, the peak of neutrophilia was significantly reduced in PKD3-/- mice after lethal influenza A virus infection. Together, these results demonstrate that PKD3 has an essential, and nonredundant, role in promoting neutrophil recruitment to the lung. A better understanding of the isoform-specific and cell type-specific activities of PKD has the potential to lead to novel therapeutics for respiratory illnesses.


Assuntos
Neutrófilos , Proteína Quinase C , Viroses , Animais , Camundongos , Neutrófilos/metabolismo , Isoformas de Proteínas , Transdução de Sinais , Proteína Quinase C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA