Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 111(1): 135-153, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28905167

RESUMO

The symbiotic nitrogen fixing legumes play an essential role in sustainable agriculture. White clover (Trifolium repens L.) is one of the most valuable perennial legumes in pastures and meadows of temperate regions. Despite its great agriculture and economic importance, there is no detailed available information on phylogenetic assignation and characterization of rhizobia associated with native white clover plants in South-Eastern Europe. In the present work, the diversity of indigenous white clover rhizobia originating in 11 different natural ecosystems in North-Eastern Romania were assessed by a polyphasic approach. Initial grouping showed that, 73 rhizobial isolates, representing seven distinct phenons were distributed into 12 genotypes, indicating a wide phenotypic and genotypic diversity among the isolates. To clarify their phylogeny, 44 representative strains were used in sequence analysis of 16S rRNA gene and IGS fragments, three housekeeping genes (atpD, glnII and recA) and two symbiosis-related genes (nodA and nifH). Multilocus sequence analysis (MLSA) phylogeny based on concatenated housekeeping genes delineated the clover isolates into five putative genospecies. Despite their diverse chromosomal backgrounds, test strains shared highly similar symbiotic genes closely related to Rhizobium leguminosarum biovar trifolii. Phylogenies inferred from housekeeping genes were incongruent with those of symbiotic genes, probably due to occurrence of lateral transfer events among native strains. This is the first polyphasic taxonomic study to report on the MLSA-based phylogenetic diversity of indigenous rhizobia nodulating white clover plants grown in various soil types in South-Eastern Europe. Our results provide valuable taxonomic data on native clover rhizobia and may increase the pool of genetic material to be used as biofertilizers.


Assuntos
Variação Genética , Filogenia , Rhizobium leguminosarum/classificação , Rhizobium leguminosarum/genética , Trifolium/microbiologia , Biodiversidade , Genes Bacterianos , Genes Essenciais , Genoma Bacteriano , Genômica/métodos , Tipagem Molecular , Tipagem de Sequências Multilocus , Fenótipo
2.
Acta Biol Hung ; 66(3): 316-25, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26344027

RESUMO

The application of commercial rhizobial inoculants to legume crops is proving to be an alternative to synthetic fertilizer use. The challenge for sustainable agriculture resides in the compatibility between crop, inoculants and environmental conditions. The evaluation of symbiotic efficiency and genetic diversity of indigenous rhizobial strains could lead to the development of better inoculants and increased crop production. The genetic variability of 32 wild indigenous rhizobial isolates was assessed by RAPD (Random Amplified Polymorphic DNA). The strains were isolated from red clover (Trifolium pratense L.) nodules from two distinct geographical regions of Northern and Eastern Romania. Three decamer primers were used to resolve the phylogenetic relationships between the investigated isolates. Cluster analysis revealed a high diversity; most strains clustered together based on their geographical location.


Assuntos
Variação Genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Rhizobium leguminosarum/genética , Simbiose/fisiologia , Trifolium/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA