Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105623, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176650

RESUMO

Group A Streptococcal M-related proteins (Mrps) are dimeric α-helical-coiled-coil cell membrane-bound surface proteins. During infection, Mrp recruit the fragment crystallizable region of human immunoglobulin G via their A-repeat regions to the bacterial surface, conferring upon the bacteria enhanced phagocytosis resistance and augmented growth in human blood. However, Mrps show a high degree of sequence diversity, and it is currently not known whether this diversity affects the Mrp-IgG interaction. Herein, we report that diverse Mrps all bind human IgG subclasses with nanomolar affinity, with differences in affinity which ranged from 3.7 to 11.1 nM for mixed IgG. Using surface plasmon resonance, we confirmed Mrps display preferential IgG-subclass binding. All Mrps were found to have a significantly weaker affinity for IgG3 (p < 0.05) compared to all other IgG subclasses. Furthermore, plasma pulldown assays analyzed via Western blotting revealed that all Mrp were able to bind IgG in the presence of other serum proteins at both 25 °C and 37 °C. Finally, we report that dimeric Mrps bind to IgG with a 1:1 stoichiometry, enhancing our understanding of this important host-pathogen interaction.


Assuntos
Proteínas de Bactérias , Streptococcus pyogenes , Humanos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Imunoglobulina G/metabolismo , Streptococcus pyogenes/metabolismo
2.
Sci Total Environ ; 919: 170815, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336047

RESUMO

Wildlife are implicated in the dissemination of antimicrobial resistance, but their roles as hosts for Escherichia coli that pose a threat to human and animal health is limited. Gulls (family Laridae) in particular, are known to carry diverse lineages of multiple-antibiotic resistant E. coli, including extra-intestinal pathogenic E. coli (ExPEC). Whole genome sequencing of 431 E. coli isolates from 69 healthy Australian silver gulls (Chroicocephalus novaehollandiae) sampled during the 2019 breeding season, and without antibiotic selection, was undertaken to assess carriage in an urban wildlife population. Phylogenetic analysis and genotyping resolved 123 sequence types (STs) representing most phylogroups, and identified diverse ExPEC, including an expansive phylogroup B2 cluster comprising 103 isolates (24 %; 31 STs). Analysis of the mobilome identified: i) widespread carriage of the Yersinia High Pathogenicity Island (HPI), a key ExPEC virulence determinant; ii) broad distribution of two novel phage elements, each carrying sitABCD and iii) carriage of the transmissible locus of stress tolerance (tLST), an element linked to sanitation resistance. Of the 169 HPI carrying isolates, 49 (48 %) represented diverse B2 isolates hosting FII-64 ColV-like plasmids that lacked iutABC and sitABC operons typical of ColV plasmids, but carried the serine protease autotransporter gene, sha. Diverse E. coli also carried archetypal ColV plasmids (52 isolates; 12 %). Clusters of closely related E. coli (<50 SNVs) from ST58, ST457 and ST746, sourced from healthy gulls, humans, and companion animals, were frequently identified. In summary, anthropogenically impacted gulls host an expansive E. coli population, including: i) putative ExPEC that carry ColV virulence gene cargo (101 isolates; 23.4 %) and HPI (169 isolates; 39 %); ii) atypical enteropathogenic E. coli (EPEC) (17 isolates; 3.9 %), and iii) E. coli that carry the tLST (20 isolates; 4.6 %). Gulls play an important role in the evolution and transmission of E. coli that impact human health.


Assuntos
Charadriiformes , Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Microbiota , Animais , Humanos , Escherichia coli/genética , Escherichia coli Extraintestinal Patogênica/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Filogenia , Austrália , Antibacterianos , Fatores de Virulência/genética , Animais Selvagens
3.
Talanta ; 276: 126221, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776768

RESUMO

Streptococcus pyogenes (Group A Streptococcus; GAS) is a Gram-positive bacterium responsible for substantial human mortality and morbidity. Conventional diagnosis of GAS pharyngitis relies on throat swab culture, a low-throughput, slow, and relatively invasive 'gold standard'. While molecular approaches are becoming increasingly utilized, the potential of saliva as a diagnostic fluid for GAS infection remains largely unexplored. Here, we present a novel, high-throughput, sensitive, and robust speB qPCR assay that reliably detects GAS in saliva using innovative 3base™ technology (Genetic Signatures Limited, Sydney, Australia). The assay has been validated on baseline, acute, and convalescent saliva samples generated from the Controlled Human Infection for Vaccination Against Streptococcus (CHIVAS-M75) trial, in which healthy adult participants were challenged with emm75 GAS. In these well-defined samples, our high-throughput assay outperforms throat culture and conventional qPCR in saliva respectively, affirming the utility of the 3base™ platform, demonstrating the feasibility of saliva as a diagnostic biofluid, and paving the way for the development of novel non-invasive approaches for the detection of GAS and other oropharyngeal pathogens.


Assuntos
Faringite , Saliva , Streptococcus pyogenes , Humanos , Streptococcus pyogenes/isolamento & purificação , Saliva/microbiologia , Faringite/microbiologia , Faringite/diagnóstico , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia , Adulto , Reação em Cadeia da Polimerase em Tempo Real/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA