Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Chem Res Toxicol ; 36(9): 1471-1482, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37566384

RESUMO

Adductomics studies are used for the detection and characterization of various chemical modifications (adducts) of nucleic acids and proteins. The advancements in liquid chromatography coupled with high-resolution tandem mass spectrometry (HRMS/MS) have resulted in efficient methods for qualitative and quantitative adductomics. We developed an HRMS-based method for the simultaneous analysis of RNA and DNA adducts in a single run and demonstrated its application using Baltic amphipods, useful sentinels of environmental disturbances, as test organisms. The novelty of this method is screening for RNA and DNA adducts by a single injection on an Orbitrap HRMS instrument using full scan and data-independent acquisition. The MS raw files were processed with an open-source program, nLossFinder, to identify and distinguish RNA and DNA adducts based on the characteristic neutral loss of ribonucleosides and 2'-deoxyribonucleosides, respectively. In the amphipods, in addition to the nearly 150 putative DNA adducts characterized earlier, we detected 60 putative RNA adducts. For the structural identification of the detected RNA adducts, the MODOMICS database was used. The identified RNA adducts included simple mono- and dimethylation and other larger functional groups on different ribonucleosides and deaminated product inosine. However, 54 of these RNA adducts are not yet structurally identified, and further work on their characterization may uncover new layers of information related to the transcriptome and help understand their biological significance. Considering the susceptibility of nucleic acids to environmental factors, including pollutants, the developed multi-adductomics methodology with further advancement has the potential to provide biomarkers for diagnostics of pollution effects in biota.


Assuntos
Adutos de DNA , RNA , DNA , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida
2.
Environ Sci Technol ; 57(29): 10591-10603, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37341092

RESUMO

Exposure to chemical pollution can induce genetic and epigenetic alterations, developmental changes, and reproductive disorders, leading to population declines in polluted environments. These effects are triggered by chemical modifications of DNA nucleobases (DNA adducts) and epigenetic dysregulation. However, linking DNA adducts to the pollution load in situ remains challenging, and the lack of evidence-based DNA adductome response to pollution hampers the development and application of DNA adducts as biomarkers for environmental health assessment. Here, we provide the first evidence for pollution effects on the DNA modifications in wild populations of Baltic sentinel species, the amphipod Monoporeia affinis. A workflow based on high-resolution mass spectrometry to screen and characterize genomic DNA modifications was developed, and its applicability was demonstrated by profiling DNA modifications in the amphipods collected in areas with varying pollution loads. Then, the correlations between adducts and the contaminants level (polycyclic aromatic hydrocarbons (PAHs), trace metals, and pollution indices) in the sediments at the collection sites were evaluated. A total of 119 putative adducts were detected, and some (5-me-dC, N6-me-dA, 8-oxo-dG, and dI) were structurally characterized. The DNA adductome profiles, including epigenetic modifications, differed between the animals collected in areas with high and low contaminant levels. Furthermore, the correlations between the adducts and PAHs were similar across the congeners, indicating possible additive effects. Also, high-mass adducts had significantly more positive correlations with PAHs than low-mass adducts. By contrast, correlations between the DNA adducts and trace metals were stronger and more variable than for PAHs, indicating metal-specific effects. These associations between DNA adducts and environmental contaminants provide a new venue for characterizing genome-wide exposure effects in wild populations and apply DNA modifications in the effect-based assessment of chemical pollution.


Assuntos
Adutos de DNA , Hidrocarbonetos Policíclicos Aromáticos , Animais , DNA , Poluição Ambiental/análise , Sedimentos Geológicos/química
3.
Appl Environ Microbiol ; 88(15): e0096622, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862669

RESUMO

Nodularia spumigena is a bloom-forming cyanobacterium that produces several classes of nonribosomal peptides (NRPs) that are biologically active; however, the ecological roles of specific NRPs remain largely unknown. Here, we explored the involvement of NRPs produced by N. spumigena in interspecific interactions by coculturing the cyanobacterium and its algal competitors, the diatom Phaeodactylum tricornutum and the cryptomonad Rhodomonas salina, and measuring NRP levels and growth responses in all three species. Contrary to the expected growth suppression in the algae, it was N. spumigena that was adversely affected by the diatom, while the cryptomonad had no effect. Reciprocal effects of N. spumigena on the algae were manifested as the prolonged lag phase in R. salina and growth stimulation in P. tricornutum; however, these responses were largely attributed to elevated pH and not to specific NRPs. Nevertheless, the NRP levels in the cocultures were significantly higher than in the monocultures, with an up to 5-fold upregulation of cell-bound nodularins and exudation of nodularin and anabaenopeptin. Thus, chemically mediated interspecific interactions can promote NRP production and release by cyanobacteria, resulting in increased input of these compounds into the water. IMPORTANCE NRPs were involved in growth responses of both cyanobacteria and algae; however, the primary driver of the growth trajectories was high pH induced by N. spumigena. Thus, the pH-mediated inhibition of eukaryotic phytoplankton may be involved in the bloom formation of N. spumigena. We also report, for the first time, the reciprocal growth inhibition of N. spumigena by diatoms resistant to alkaline conditions. As all species in this study can co-occur in the Baltic Sea during summer, these findings are highly relevant for understanding ecological interactions in planktonic communities in this and other systems experiencing regular cyanobacteria blooms.


Assuntos
Cianobactérias , Diatomáceas , Nodularia/química , Peptídeos
4.
Environ Sci Technol ; 54(22): 14380-14392, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33104348

RESUMO

Assessment of micropollutant biodegradation is essential to determine the persistence of potentially hazardous chemicals in aquatic ecosystems. We studied the dissipation half-lives of 10 micropollutants in sediment-water incubations (based on the OECD 308 standard) with sediment from two European rivers sampled upstream and downstream of wastewater treatment plant (WWTP) discharge. Dissipation half-lives (DT50s) were highly variable between the tested compounds, ranging from 1.5 to 772 days. Sediment from one river sampled downstream from the WWTP showed the fastest dissipation of all micropollutants after sediment RNA normalization. By characterizing sediment bacteria using 16S rRNA sequences, bacterial community composition of a sediment was associated with its capacity for dissipating micropollutants. Bacterial amplicon sequence variants of the genera Ralstonia, Pseudomonas, Hyphomicrobium, and Novosphingobium, which are known degraders of contaminants, were significantly more abundant in the sediment incubations where fast dissipation was observed. Our study illuminates the limitations of the OECD 308 standard to account for variation of dissipation rates of micropollutants due to differences in bacterial community composition. This limitation is problematic particularly for those compounds with DT50s close to regulatory persistence criteria. Thus, it is essential to consider bacterial community composition as a source of variability in regulatory biodegradation and persistence assessments.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Bactérias/genética , Ecossistema , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 53(22): 13107-13116, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31633921

RESUMO

Sea spray aerosol (SSA) emission is a complex process affected by various controlling factors. This work seeks to deconvolute some of this complexity in a controlled laboratory setting using a plunging jet by varying three key parameters, one at a time: (1) air entrainment rate, (2) seawater temperature, and (3) biomass of phytoplankton. The production of SSA is found to vary linearly with air entrainment rate. By normalizing the production flux to air entrainment rate, we observe nonlinear variation of the production efficiency of SSA with seawater temperature with a minimum around 6-10 °C. For comparison, SSA was also generated by detraining air into artificial seawater using a diffuser demonstrating that the production efficiency of SSA generated using a diffuser decreases almost linearly with increasing seawater temperature, and the production efficiency is significantly higher than that for SSA generated using a plunging jet. Finally, by varying the amount of phytoplankton biomass we demonstrate that SSA particle production varies nonlinearly with the amount of biomass in seawater.


Assuntos
Fitoplâncton , Água , Aerossóis , Biomassa , Água do Mar , Temperatura
6.
Environ Microbiol ; 20(8): 2796-2808, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29614210

RESUMO

In aquatic ecosystems, microplastics are a relatively new anthropogenic substrate that can readily be colonized by biofilm-forming organisms. To examine the effects of substrate type on microbial community assembly, we exposed ambient Baltic bacterioplankton to plastic substrates commonly found in marine environments (polyethylene, polypropylene and polystyrene) as well as native (cellulose) and inert (glass beads) particles for 2 weeks under controlled conditions. The source microbial communities and those of the biofilms were analyzed by Illumina sequencing of the 16S rRNA gene libraries. All biofilm communities displayed lower diversity and evenness compared with the source community, suggesting substrate-driven selection. Moreover, the plastics-associated communities were distinctly different from those on the non-plastic substrates. Whereas plastics hosted greater than twofold higher abundance of Burkholderiales, the non-plastic substrates had a significantly higher proportion of Actinobacteria and Cytophagia. Variation in the community structure, but not the cell abundance, across the treatments was strongly linked to the substrate hydrophobicity. Thus, microplastics host distinct bacterial communities, at least during early successional stages.


Assuntos
Bactérias/isolamento & purificação , Plásticos , Actinobacteria/isolamento & purificação , Bactérias/genética , Bacteroidetes/isolamento & purificação , Biofilmes , Burkholderiales/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Microbiota , Plâncton/genética , Plâncton/isolamento & purificação , RNA Ribossômico 16S/genética
7.
Environ Sci Technol ; 52(8): 4861-4868, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29565572

RESUMO

Stable nitrogen isotopes (δ15N) are used as indicators of trophic position (TP) of consumers. Deriving TP from δ15N of individual amino acids (AAs) is becoming popular in ecological studies, because of lower uncertainty than TP based on bulk δ15N (TPbulk). This method would also facilitate biomagnification studies provided that isotope fractionation is unaffected by toxic exposure. We compared TPAA and TPbulk estimates for a sediment-dwelling bivalve from two coastal sites, a pristine and a contaminated. Chemical analysis of PCB levels in mussels, sediments, and pore water confirmed the expected difference between sites. Both methods, but in particular the TPAA underestimated the actual TP of bivalves. Using error propagation, the total uncertainty related to the analytical precision and assumptions in the TP calculations was found to be similar between the two methods. Interestingly, the significantly higher intercept for the regression between TPAA and TPbulk in the contaminated site compared to the pristine site indicates a higher deamination rate due to detoxification as a result of chronic exposure and a higher 15N fractionation. Hence, there is a need for controlled experiments on assumptions underlying amino acid-specific stable isotope methods in food web and bimagnification studies.


Assuntos
Bivalves , Cadeia Alimentar , Animais , Isótopos de Carbono , Isótopos de Nitrogênio
8.
Environ Sci Technol ; 50(15): 8296-304, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27367056

RESUMO

Trophic magnification factor (TMF) analysis employs stable isotope signatures to derive biomagnification potential for environmental contaminants. This approach relies on species δ(15)N values aligning with their trophic position (TP). This, however, may not always be true, because toxic exposure can alter growth and isotope allocation patterns. Here, effects of PCB exposure (mixture of PCB18, PCB40, PCB128, and PCB209) on δ(15)N and δ(13)C as well as processes driving these effects were explored using the cladoceran Daphnia magna. A two-part experiment assessed effects of toxic exposure during and after exposure; juvenile daphnids were exposed during 3 days (accumulation phase) and then allowed to depurate for 4 days (depuration phase). No effects on survival, growth, carbon and nitrogen content, and stable isotope composition were observed after the accumulation phase, whereas significant changes were detected in adults after the depuration phase. In particular, a significantly lower nitrogen content and a growth inhibition were observed, with a concomitant increase in δ(15)N (+0.1 ‰) and decrease in δ(13)C (-0.1 ‰). Although of low magnitude, these changes followed the predicted direction indicating that sublethal effects of contaminant exposure can lead to overestimation of TP and hence underestimated TMF.


Assuntos
Daphnia/efeitos dos fármacos , Isótopos de Nitrogênio , Animais , Isótopos de Carbono
9.
Environ Sci Technol ; 49(11): 6934-42, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25893846

RESUMO

The potential for using stable isotope analysis in risk assessment of environmental contaminants is crucially dependent on the predictability of the trophic transfer of isotopes in food webs. The relationship between contaminant levels and trophic position of consumers is widely used to assess biomagnification properties of various pollutants by establishing trophic magnification factors (TMF). However, contaminant-induced variability of the isotopic composition in biota is poorly understood. Here, we investigated effects of toxic exposure on δ(15)N and δ(13)C values in a consumer, with a main hypothesis that these effects would be largely mediated via growth rate and metabolic turnover of the test animals. The cladoceran Daphnia magna was used in two experiments that were conducted to manipulate growth and body condition (assayed as C:N ratio) by food availability and temperature (Experiment 1) and by toxic exposure to the pesticide lindane (Experiment 2). We found a significant negative effect of growth rate and a positive effect of temperature on the consumer-diet discrimination factor for δ(15)N and δ(13)C, with no effects on the C:N ratio (Experiment 1). In lindane-exposed daphnids, a significant growth inhibition was observed, with concomitant increase in metabolic costs and significantly elevated size-specific δ(15)N and δ(13)C values. Moreover, a significantly higher incorporation of carbon relative to nitrogen, yet a concomitant decrease in C:N ratio was observed in the exposed animals. Together, these results have methodological implications for determining trophic positions and TMF in polluted environments, where elevated δ(15)N values would translate into overestimated trophic positions and underestimated TMF. Furthermore, altered δ(13)C values may lead to erroneous food-chain assignment of the consumer in question.


Assuntos
Daphnia/crescimento & desenvolvimento , Daphnia/metabolismo , Exposição Ambiental/análise , Animais , Isótopos de Carbono/análise , Marcação por Isótopo , Modelos Lineares , Isótopos de Nitrogênio/análise , Temperatura
10.
Environ Sci Technol ; 49(9): 5779-87, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25850437

RESUMO

In polluted environments, contaminant effects may be manifested via both direct toxicity to the host and changes in its microbiota, affecting bacteria-host interactions. In this context, particularly relevant is exposure to antibiotics released into environment. We examined effects of the antibiotic trimethoprim on microbiota of Daphnia magna and concomitant changes in the host feeding. In daphnids exposed to 0.25 mg L(-1) trimethoprim for 24 h, the microbiota was strongly affected, with (1) up to 21-fold decrease in 16S rRNA gene abundance and (2) a shift from balanced communities dominated by Curvibacter, Aquabacterium, and Limnohabitans in controls to significantly lower diversity under dominance of Pelomonas in the exposed animals. Moreover, decreased feeding and digestion was observed in the animals exposed to 0.25-2 mg L(-1) trimethoprim for 48 h and then fed 14C-labeled algae. Whereas the proportion of intact algal cells in the guts increased with increased trimethoprim concentration, ingestion and incorporation rates as well as digestion and incorporation efficiencies decreased significantly. Thus, antibiotics may impact nontarget species via changes in their microbiota leading to compromised nutrition and, ultimately, growth. These bacteria-mediated effects in nontarget organisms may not be unique for antibiotics, but also relevant for environmental pollutants of various nature.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Antibacterianos/farmacologia , Bactérias/metabolismo , Daphnia/efeitos dos fármacos , Daphnia/microbiologia , Animais , Biodiversidade , Comportamento Alimentar/efeitos dos fármacos , Dados de Sequência Molecular , Filogenia , Trimetoprima/farmacologia
11.
Ecology ; 95(5): 1272-84, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25000759

RESUMO

Consumer growth can be affected by imbalances between the nutrient content of the consumer and its food resource. Although ontogenetic-driven changes in animal composition are well documented, their potential consequences for the organism's sensitivity to food quality constraints have remained elusive. Here we show that the potential growth response of the copepod Mixodiaptomus laciniatus (as %RNA and RNA:DNA ratio) to the natural gradient of seston carbon (C) : nutrient ratio is unimodal and stage specific. Solution of the equation given by the first derivative function provided the optimum C : nutrient ratio for maximum stage-specific growth, which increased during ontogeny. The peakedness of the function indicated that animal vulnerability to suboptimal food quality decreased as juveniles reached adulthood. Consistent with these results, a field experiment demonstrated that potential consumer growth responded to variations in seston C: phosphorus ratio, and that early life stages were particularly vulnerable to suboptimal food quality.


Assuntos
Copépodes/fisiologia , Herbivoria/fisiologia , Animais , DNA/genética , DNA/metabolismo , Ecossistema , Regulação da Expressão Gênica no Desenvolvimento , Lagos , Estágios do Ciclo de Vida , RNA/genética , RNA/metabolismo , Fatores de Tempo
12.
Environ Sci Technol ; 48(21): 12886-92, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25247638

RESUMO

To apply biomarkers of oxidative stress in laboratory and field settings, an understanding of their responses to changes in physiological rates is important. The evidence is accumulating that caloric intake can increase production of reactive oxygen species and thus affect background variability of oxidative stress biomarkers in ecotoxicological testing. This study aimed to delineate effects of food intake and xenobiotics on oxidative biomarkers in Daphnia magna. Antioxidant capacity measured as oxygen radical absorbance capacity (ORAC) and lipid peroxidation assayed as thiobarbituric acid reactive substances (TBARS) were measured. Food intake was manipulated by varying food densities or by exposing the animals to chemicals inhibiting feeding rate (pharmaceutical haloperidol and pesticide lindane). Feeding rate proved to affect both protein, ORAC, and TBARS in unexposed daphnids. However, there was no significant effect of feeding rate on the protein-specific ORAC values. Both substances affected individual protein and ORAC levels and changed their relationship to feeding rate. Our results show that inhibition of feeding rate influenced the interpretation of biomarker response and further emphasize the importance of understanding (1) baseline variability in potential biomarkers due to variations in metabolic state and (2) the contribution of feeding rate on toxic response of biomarkers.


Assuntos
Daphnia/fisiologia , Ecotoxicologia , Comportamento Alimentar/efeitos dos fármacos , Testes de Toxicidade , Xenobióticos/toxicidade , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Daphnia/efeitos dos fármacos , Análise dos Mínimos Quadrados , Modelos Lineares , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
13.
Environ Toxicol Chem ; 43(2): 279-287, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975553

RESUMO

Persistent organic pollutants (POPs) pose a risk in aquatic environments. In sediment, this risk is frequently evaluated using total or organic carbon-normalized concentrations. However, complex physicochemical sediment characteristics affect POP bioavailability in sediment, making its prediction a challenging task. This task can be addressed using chemical activity, which describes a compound's environmentally effective concentration and can generally be approximated by the degree of saturation for each POP in its matrix. We present a proof of concept to load artificial sediments with POPs to reach a target chemical activity. This approach is envisioned to make laboratory ecotoxicological bioassays more reproducible and reduce the impact of sediment characteristics on the risk assessment. The approach uses a constantly replenished, saturated, aqueous POP solution to equilibrate the organic carbon fraction (e.g., peat) of an artificial sediment, which can be further adjusted to target chemical activities by mixing with clean peat. We demonstrate the applicability of this approach using four polycyclic aromatic hydrocarbons (acenaphthene, fluorene, phenanthrene, and fluoranthene). Within 5 to 17 weeks, the peat slurry reached a chemical equilibrium with the saturated loading solution. We used two different peat batches (subsamples from the same source) to evaluate the approach. Variations in loading kinetics and eventual equilibrium concentrations were evident between the batches, which highlights the impact of even minor disparities in organic carbon properties within two samples of peat originating from the same source. This finding underlines the importance of moving away from sediment risk assessments based on total concentrations. The value of the chemical activity-based loading approach lies in its ability to anticipate similar environmental impacts, even with varying contaminant concentrations. Environ Toxicol Chem 2024;43:279-287. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Bioensaio , Carbono , Solo
14.
Chemosphere ; 358: 142176, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701864

RESUMO

Spatial patterns, potential origins, and ecotoxicological risk of alkylated (APAH) -and parent -(PPAH) polycyclic aromatic hydrocarbons (PAHs) were studied in mangrove surface sediments along the northern coasts of the Persian Gulf, Iran. The mean total concentrations (ngg-1dw) ∑32PAH, ∑PPAHs and ∑APAHs in sediments were 3482 (1689-61228), 2642 (1109-4849), and 840 (478-1273), respectively. The spatial variability was similar among these PAH groups, with the highest levels occurring in Nayband National Marine Park (NNMP). Physicochemical environmental factors, such as sediment grain size, and total organic carbon (TOC) contents, are significant factors of PAH distribution. These findings suggest that PAH pollution level is moderate-to-high, supporting the current view that mangrove ecosystems are under intensive anthropogenic impacts, such as petrochemical, oil and gas loads, port activities, and urbanization. Non-parametric multidimensional scaling (NPMDS) ordination demonstrated that NNMP mangrove is the critical site exhibiting high loading of PAH pollutants. Here, for the first time in this region, Soil quality guidelines (SQGs), Toxic equivalency quotient (TEQ), Mutagenic equivalency quotient (MEQ), and composition indices comprising Mean maximum permissible concentration quotient (m-MPC-Q), and Mean effect range median quotient (m-ERM-Q) methods were used to have a comprehensive risk assessment for PAH compounds and confirmed medium-to-high ecological risks of PAHs in the study area, particularly in the western part of the Gulf, highlighting the industrial impacts on the environment.


Assuntos
Ecotoxicologia , Monitoramento Ambiental , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Irã (Geográfico) , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Oceano Índico , Medição de Risco , Áreas Alagadas
15.
Environ Pollut ; 341: 122882, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951527

RESUMO

Understanding how key-species respond to anthropogenic stress such as chemical pollution is critical for predicting ecosystem changes. Little is however known about the intra-specific variability in the physiological and biochemical traits involved in contaminant exposure responses. Here, we explored this idea by exposing the Baltic amphipod Monoporeia affinis from two sites, one moderately polluted and one more pristine, to a sediment spiked with PAHs and PCBs. We evaluated the amphipods responses related to feeding, growth, a stress biomarker (acetylcholinesterase [AChE] inhibition) and stable isotope (δ13C and δ15N) composition including isotope niche analyses. More adverse responses were expected in animals from the low-pollution site than those from the high-pollution site due to tolerance development in the latter. Amphipods from both populations showed a ∼30% AChE inhibition when exposed to the contaminant spiked sediment. However, both controls and exposed amphipods from the high-pollution site had higher survival, nutrient uptake and condition status than the amphipods from the low-pollution site, which did not feed on the added diatoms as indicated by their isotope values. We found no signs of population-specific responses in physiological adjustments to contaminants with regard to classic ecotoxicological biomarkers such as AChE inhibition and growth status. Instead, isotope niche analyses proved useful in assessing contaminant stress responses at the population level.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Espécies Sentinelas , Acetilcolinesterase , Ecossistema , Monitoramento Ambiental , Anfípodes/fisiologia , Isótopos/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
16.
Environ Pollut ; 336: 122369, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597735

RESUMO

The ubiquitous occurrence of microplastics is raising broad concerns and motivating effect studies. In these studies, however, particle behaviour in the water and aggregation are rarely considered leading to contradictory results reported by different studies. Using an environmentally relevant experimental setup with Daphnia magna as a test organism, we investigated how experimental conditions affect particle aggregation and the aggregate heterogeneity in terms of the particle size distribution. The experimental factors considered were (1) exposure duration (48 h vs 120 h), (2) the total mass of suspended solids (0-10 mg/l) composed of natural mineral particles (kaolin) and microplastics, (3) the proportion of the microplastics in the particle suspension (0-10% by mass), (4) dissolved organic matter (DOM; 0 vs 20 mg agarose/l), and (5) presence of the test organism (0 and 5 daphnids/vial). We found that particle aggregation occurs within the first 48 h of incubation in all treatments, no substantial change in the aggregate heterogeneity is observed afterwards. The median aggregate size was ∼2-fold higher than the nominal average particle size of clay and microplastics in the stock suspensions used to prepare the experimental mixtures. The strongest positive driver of the aggregate size and heterogeneity was DOM, followed by the presence of daphnids and the concentration of the suspended solids in the system. Also, microplastics were found to facilitate aggregation, albeit they were the weakest contributor. Moreover, besides directly increasing the aggregation, DOM relaxed the effects of the total solids and daphnids on the aggregate size. Thus, the particle size distribution was established early during the exposure and shaped by all experimental factors and their interactions. These findings improve our understanding of the processes occurring in the exposure systems when conducting effect studies with microplastics and other particulates and demonstrate the necessity to access the particle size distribution to characterise the exposure. Aslo, relevant experimental designs with microplastics must include relevant natural particulates and DOM to ensure environmentally realistic particle behaviour and adequate particle-biota interactions.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37619954

RESUMO

Artificial sweeteners are widely used in food and pharmaceuticals, but their stability and persistence raise concerns about their impact on aquatic life. Although standard toxicity tests do not reveal lethal effects, recent studies suggest a potential neurotoxic mode of action. Using environmentally relevant concentrations, we assessed the effects of sucralose and acesulfame, common sugar substitutes, on Daphnia magna focusing on biochemical (acetylcholinesterase activity; AChE), physiological (heart rate), and behavioural (swimming) endpoints. We found dose-dependent increases in AChE and inhibitory effects on heart rate and behaviour for both substances. Moreover, acesulfame induced a biphasic response in AChE activity, inhibiting it at lower concentrations and stimulating at higher ones. For all endpoints, the EC50 values were lower for acesulfame than for sucralose. Additionally, the relationship between acetylcholinesterase and heart rate differed depending on the substance, suggesting possible differences in the mode of action between sucralose and acesulfame. All observed EC50 values were at µg/l levels, i.e., within the levels reported for wastewater, with adverse effects observed at as low as 0.1 µg acesulfame /l. Our findings emphasise the need to re-evaluate risk assessment thresholds for artificial sweeteners and provide evidence for the neurotoxic effects of artificial sweeteners in the environment, informing international regulatory standards.


Assuntos
Síndromes Neurotóxicas , Edulcorantes , Animais , Edulcorantes/toxicidade , Daphnia , Acetilcolinesterase , Cardiotoxicidade
18.
Sci Rep ; 12(1): 22169, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550191

RESUMO

We present a common-garden experiment to examine the amphipod Monoporeia affinis, a key deposit-feeder in the Baltic Sea, a low diversity system offering a good model for studying local adaptations. In the northern part of this system, the seasonal development of phytoplankton is characterized by a single diatom bloom (high nutritional quality), whereas in the south, the diatom bloom is followed by a cyanobacteria bloom (low nutritional quality) during summer. Therefore, the nutrient input to the benthic system differs between the sea basins. Accordingly, the amphipod populations were expected to be dietary specialists in the north and generalists in the south. We tested this hypothesis using a combination of stable isotope tracers, trophic niche analyses, and various endpoints of growth and health status. We found that when mixed with diatomes, the toxin-producing cyanobacteria, were efficiently incorporated and used for growth by both populations. However, contrary to expectations, the feeding plasticity was more pronounced in the northern population, indicating genetically-based divergence and suggesting that these animals can develop ecological adaptations to the climate-induced northward cyanobacteria expansion in this system. These findings improve our understanding regarding possible adaptations of the deposit-feeders to increasing cyanobacteria under global warming world in both limnic and marine ecosystems. It is possible that the observed effects apply to other consumers facing altered food quality due to environmental changes.


Assuntos
Cianobactérias , Ecossistema , Animais , Cianobactérias/genética , Fitoplâncton , Aquecimento Global , Aclimatação , Eutrofização
20.
Front Physiol ; 12: 805646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058807

RESUMO

The association between oxidative processes and physiological responses has received much attention in ecotoxicity assessment. In the Baltic Sea, bloom-forming cyanobacterium Nodularia spumigena is a significant producer of various bioactive compounds, and both positive and adverse effects on grazers feeding in cyanobacteria blooms are reported. To elucidate the effect mechanisms and species sensitivity to the cyanobacteria-dominating diet, we exposed two Baltic copepods, Acartia bifilosa and Eurytemora affinis, to a diet consisting of toxin-producing cyanobacteria N. spumigena and a high-quality food Rhodomonas salina at 0-300 µg C L-1; the control food was R. salina provided as a monodiet at the same food levels. The subcellular responses to food type and availability were assayed using a suite of biomarkers - antioxidant enzymes [superoxide dismutases (SOD), catalase (CAT), and glutathione S-transferases (GST)] and acetylcholinesterase (AChE). In parallel, we measured feeding activity using gut content (GC) assayed by real-time PCR analysis that quantified amounts of the prey DNA in copepod stomachs. As growth and reproduction endpoints, individual RNA content (a proxy for protein synthesis capacity), egg production rate (EPR), and egg viability (EV%) were used. In both toxic and nontoxic foods, copepod GC, RNA content, and EPR increased with food availability. Antioxidant enzyme activities increased with food availability regardless of the diet type. Moreover, CAT (both copepods), SOD, and GST (A. bifilosa) were upregulated in the copepods receiving cyanobacteria; the response was detectable when adjusted for the feeding and/or growth responses. By contrast, the diet effects were not significant when food concentration was used as a co-variable. A bimodal response in AChE was observed in A. bifilosa feeding on cyanobacteria, with up to 52% increase at the lower levels (5-25 µg C L-1) and 32% inhibition at the highest food concentrations. These findings contribute to the refinement of biomarker use for assessing environmental stress and mechanistic understanding of cyanobacteria effects in grazers. They also suggest that antioxidant and AChE responses to feeding activity and diet should be accounted for when using biomarker profiles in field-collected animals in the Baltic Sea and, perhaps other systems, where toxic cyanobacteria are common.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA