Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(42): 15126-31, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25267628

RESUMO

Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines.


Assuntos
Migração Animal , Comportamento Animal , Quirópteros/fisiologia , Vento , Animais , Indiana , Percepção , Estações do Ano , Temperatura , Árvores , Estados Unidos , Gravação em Vídeo
2.
PLoS One ; 18(8): e0288280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616252

RESUMO

The Hawaiian hoary bat (Lasiurus semotus; Chiroptera: Vespertilionidae), commonly and locally known as 'ope'ape'a, is a solitary, insectivorous, and foliage-roosting species distributed across a wide range of habitats in lowland and montane environments. The species, as with many others in the Hawaiian archipelago, are facing a suite of challenges due to habitat loss and degradation, introduced predators and pests, and climate change. An understanding of the roost requirements of foliage-roosting tree bats is critical to their conservation as these habitats provide several important benefits to survival and reproduction. Because little is known about 'ope'ape'a roost ecology and considerable effort is needed to capture and track bats to roost locations, we examined resource selection at multiple spatial scales-perch location within a roost tree, roost tree, and forest stand. We used a discrete choice modeling approach to investigate day-roost selection and describe attributes of roost trees including those used as maternity roosts. 'Ope'ape'a were found roosting in 19 tree species and in an assortment of landcover types including native and non-native habitats. Our results are largely consistent with findings of other studies of foliage-roosting, insectivorous tree bats where bats selected roost locations that may offer protection and thermoregulatory benefits.


Assuntos
Quirópteros , Animais , Feminino , Humanos , Gravidez , Regulação da Temperatura Corporal , Mudança Climática , Eulipotyphla , Havaí , Poaceae , Árvores
3.
PLoS One ; 13(10): e0205150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30379835

RESUMO

Multi-state occupancy modeling can often improve assessments of habitat use and site quality when animal activity or behavior data are available. We examine the use of the approach for evaluating foraging habitat suitability of the endangered Hawaiian hoary bat (Lasiurus cinereus semotus) from classifications of site occupancy based on flight activity levels and feeding behavior. In addition, we used data from separate visual and auditory sources, namely thermal videography and acoustic (echolocation) detectors, jointly deployed at sample sites to compare the effectiveness of each method in the context of occupancy modeling. Video-derived observations demonstrated higher and more accurate estimates of the prevalence of high bat flight activity and feeding events than acoustic sampling methods. Elevated levels of acoustic activity by Hawaiian hoary bats were found to be related primarily to beetle biomass in this study. The approach may have a variety of applications in bat research, including inference about species-resource relationships, habitat quality and the extent to which species intensively use areas for activities such as foraging.


Assuntos
Comportamento Apetitivo , Quirópteros , Ecossistema , Comportamento Alimentar , Voo Animal , Modelos Biológicos , Animais , Ecolocação , Espécies em Perigo de Extinção , Havaí
4.
Sci Adv ; 2(9): e1600029, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27617287

RESUMO

The viability of many species has been jeopardized by numerous negative factors over the centuries, but climate change is predicted to accelerate and increase the pressure of many of these threats, leading to extinctions. The Hawaiian honeycreepers, famous for their spectacular adaptive radiation, are predicted to experience negative responses to climate change, given their susceptibility to introduced disease, the strong linkage of disease distribution to climatic conditions, and their current distribution. We document the rapid collapse of the native avifauna on the island of Kaua'i that corresponds to changes in climate and disease prevalence. Although multiple factors may be pressuring the community, we suggest that a tipping point has been crossed in which temperatures in forest habitats at high elevations have reached a threshold that facilitates the development of avian malaria and its vector throughout these species' ranges. Continued incursion of invasive weeds and non-native avian competitors may be facilitated by climate change and could also contribute to declines. If current rates of decline continue, we predict multiple extinctions in the coming decades. Kaua'i represents an early warning for the forest bird communities on the Maui and Hawai'i islands, as well as other species around the world that are trapped within a climatic space that is rapidly disappearing.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Passeriformes/fisiologia , Animais , Havaí , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA