Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 18(11): 6756-6763, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30350634

RESUMO

Additive manufacturing methods are transforming the way components and devices are fabricated, which in turn is opening up completely new vistas for conceiving and designing products and engineered systems. Small-scale (submicrometer) additive manufacturing methods are largely in their infancy. While a number of methods exist, a particular challenge lies in finding methods that can produce a range of materials while obtaining sufficiently robust mechanical properties. In this paper, we describe a novel nanoscale additive manufacturing technique deemed "Nanotribological Printing" (NTP), which creates structures through tribomechanical and tribochemical surface interactions at the contact between a substrate and an atomic force microscope probe, where material pattern formation is driven by normal and shear contact stresses. The "ink" consists of nanoparticles or molecules dispersed in a carrier fluid surrounding the atomic force microscope (AFM) probe, which are entrained into the contact during sliding. Being stress-driven, patterning only occurs locally within regions which experience contact and sufficiently high stresses. Thus, imaging and measurement to characterize the morphology and properties of the deposited structures can be conducted in situ during the manufacturing process. Moreover, using local mechanical energy as the kinetic driver activating the solidification process, the method is compact and does not require application of a bias voltage or laser exposure and can be performed at ambient temperatures. We demonstrate (1) control of pattern dimensions with sub-100 nm lateral and sub-5 nm thickness control through variations in contact size and applied stress, (2) creation of amorphous, polycrystalline, and nanocomposite structures including sequential multimaterial deposition, and (3) formation of manufactured structures which exhibit mechanical properties approaching those of bulk counterparts. The ability to create nanoscale patterns using standard AFM cantilever probes and operation modes (contact mode scanning in fluid) with commercial AFM instruments, independent of substrate, establishes NTP as a versatile and easily accessible method for nanoscale additive manufacturing.


Assuntos
Modelos Químicos , Nanopartículas/química , Estresse Mecânico , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Tamanho da Partícula
2.
Langmuir ; 31(47): 12960-7, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26529283

RESUMO

We present combined force curve and conduction atomic force microscopy (AFM) data for the linear alkanes CnH2n+2 (n = 10, 12, 14, 16) confined between a gold-coated AFM tip and a graphite surface. Solvation layering is observed in the force curves for all liquids, and conduction AFM is used to study in detail the removal of the confined (mono)layer closest to the graphite surface. The squeeze-out behavior of the monolayer can be very different depending upon the temperature. Below the monolayer melting transition temperatures the molecules are in an ordered state on the graphite surface, and fast and complete removal of the confined molecules is observed. However, above the melting transition temperature the molecules are in a disordered state, and even at large applied pressure a few liquid molecules are trapped within the tip-sample contact zone. These findings are similar to a previous study for branched alkanes [ Gosvami Phys. Rev. Lett. 2008, 100, 076101 ], but the observation for the linear alkane homologue series demonstrates clearly the dependence of the squeeze-out and trapping on the state of the confined material.

3.
Science ; 348(6230): 102-6, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25765069

RESUMO

Zinc dialkyldithiophosphates (ZDDPs) form antiwear tribofilms at sliding interfaces and are widely used as additives in automotive lubricants. The mechanisms governing the tribofilm growth are not well understood, which limits the development of replacements that offer better performance and are less likely to degrade automobile catalytic converters over time. Using atomic force microscopy in ZDDP-containing lubricant base stock at elevated temperatures, we monitored the growth and properties of the tribofilms in situ in well-defined single-asperity sliding nanocontacts. Surface-based nucleation, growth, and thickness saturation of patchy tribofilms were observed. The growth rate increased exponentially with either applied compressive stress or temperature, consistent with a thermally activated, stress-assisted reaction rate model. Although some models rely on the presence of iron to catalyze tribofilm growth, the films grew regardless of the presence of iron on either the tip or substrate, highlighting the critical role of stress and thermal activation.

4.
Phys Rev Lett ; 100(7): 076101, 2008 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18352571

RESUMO

We study squalane and heptamethylnonane (HMN) confined between a conducting atomic force microscope tip and a graphite surface. Solvation layering occurs for both liquids but marked differences in the squeeze out mechanics are observed for ordered or disordered monolayers. The squalane monolayer at 25 degrees C is an ordered solid, as verified by direct imaging, and the squeeze out can be modeled using elastic continuum mechanics. HMN is in a disordered state at 25 degrees C and cannot be modeled as a single elastic asperity even in solid-solid contact because HMN liquid is trapped in the contact zone.

5.
J Chem Phys ; 126(21): 214708, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17567214

RESUMO

We have performed simultaneous force and conductivity measurement of hexadecane liquid confined between a conducting atomic force microscope tip and a graphite surface. Both the current and the force data reveal discrete solvation layering of the hexadecane near the surface. We typically observe that the current does not vary with load in a simple way as the layer closest to the surface is compressed, but increases markedly prior to the expulsion of material from the tip-sample gap. We infer that even for a nanoscale asperity there is conformation change of the confined hexadecane under the tip apex prior to squeeze out of the molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA