RESUMO
MicroRNA (miRNA) target mimicry technologies, utilizing naturally occurring miRNA decoy molecules, represent a potent tool for analyzing miRNA function. In this study, we present a highly efficient small RNA (sRNA) target mimicry design based on G-U base-paired hairpin RNA (hpG:U), which allows for the simultaneous targeting of multiple sRNAs. The hpG:U constructs consistently generate high amounts of intact, polyadenylated stem-loop (SL) RNA outside the nuclei, in contrast to traditional hairpin RNA designs with canonical base pairing (hpWT), which were predominantly processed resulting in a loop. By incorporating a 460-bp G-U base-paired double-stranded stem and a 312-576 nt loop carrying multiple miRNA target mimicry sites (GUMIC), the hpG:U construct displayed effective repression of three Arabidopsis miRNAs, namely miR165/166, miR157, and miR160, both individually and in combination. Additionally, a GUMIC construct targeting a prominent cluster of siRNAs derived from cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat) effectively inhibited Y-Sat siRNA-directed silencing of the chlorophyll biosynthetic gene CHLI, thereby reducing the yellowing symptoms in infected Nicotiana plants. Therefore, the G-U base-paired hpRNA, characterized by differential processing compared to traditional hpRNA, acts as an efficient decoy for both miRNAs and siRNAs. This technology holds great potential for sRNA functional analysis and the management of sRNA-mediated diseases.
Assuntos
Arabidopsis , MicroRNAs , Pareamento de Bases/genética , Plantas Geneticamente Modificadas/genética , RNA Interferente Pequeno/genética , MicroRNAs/genética , Interferência de RNA , RNA Mensageiro/genética , RNA de Cadeia Dupla , Arabidopsis/genéticaRESUMO
Oomycetes are diploid eukaryotic microorganisms that seriously threaten sustainable crop production. MicroRNAs (miRNAs) and corresponding natural antisense transcripts (NATs) are important regulators of multiple biological processes. However, little is known about their roles in plant immunity against oomycete pathogens. In this study, we report the identification and functional characterization of miR398b and its cis-NAT, the core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase gene (AtC2GnT), in plant immunity. Gain- and loss-of-function assays revealed that miR398b mediates Arabidopsis thaliana susceptibility to Phytophthora parasitica by targeting Cu/Zn-Superoxidase Dismutase1 (CSD1) and CSD2, leading to suppressed expression of CSD1 and CSD2 and decreased plant disease resistance. We further showed that AtC2GnT transcripts could inhibit the miR398b-CSDs module via inhibition of pri-miR398b expression, leading to elevated plant resistance to P. parasitica. Furthermore, quantitative reverse transcription PCR, RNA ligase-mediated 5'-amplification of cDNA ends (RLM-5' RACE), and transient expression assays indicated that miR398b suppresses the expression of AtC2GnT. We generated AtC2GnT-silenced A. thaliana plants by CRISPR/Cas9 or RNA interference methods, and the Nicotiana benthamiana NbC2GnT-silenced plants by virus-induced gene silencing. Pathogenicity assays showed that the C2GnT-silenced plants were more susceptible, while AtC2GnT-overexpressing plants exhibited elevated resistance to P. parasitica. AtC2GnT encodes a Golgi-localized protein, and transient expression of AtC2GnT enhanced N. benthamiana resistance to Phytophthora pathogens. Taken together, our results revealed a positive role of AtC2GnT and a negative regulatory loop formed by miR398b and AtC2GnT in regulating plant resistance to P. parasitica.
Assuntos
Arabidopsis , Phytophthora , Arabidopsis/genética , Arabidopsis/metabolismo , Resistência à Doença/genética , Retroalimentação , Regulação da Expressão Gênica de Plantas , Phytophthora/fisiologia , Doenças das Plantas/genéticaRESUMO
Loquat (Eriobotrya japonica Lindl.) is a popular fruit and medicinal plant. Proanthocyanidins (PAs), as one of the main types of flavonoids, are the key components of loquat fruit quality and medicinal properties. However, the identification of transcription factors (TFs) involved in PA accumulation in loquat remains limited. R2R3-MYB TFs play key regulatory role in PA accumulation in plants. In this study, 190 R2R3-MYB TFs were identified in loquat genome. Combined with transcriptome data, R2R3-MYB TF EjMYB5 involved in PA accumulation in loquat was isolated. EjMYB5 was transcriptional activator localized to nucleus. Expression of EjMYB5 was closely related to PA accumulation in loquat fruits. Heterogenous overexpression of EjMYB5 in tomato (Solanum lycopersicum) inhibited anthocyanin accumulation and promoted PA accumulation. Additionally, transient overexpression of EjMYB5 in tobacco (Nicotiana benthamiana) leaves promoted PA accumulation by upregulating flavonoid biosynthesis genes (NtDFR, NtANS, and NtLAR). Transcriptome analysis of EjMYB5-overexpressing tomato fruits suggested that EjMYB5 was involved in several biological pathways, including lipid metabolism, MAPK signaling, phenylpropanoid biosynthesis, and flavonoid biosynthesis. Collectively, our findings provided basic data for further analysis the function of R2R3-MYB TFs in loquat, and revealed that EjMYB5 functioned as PA accumulation in loquat.
Assuntos
Eriobotrya , Proteínas de Plantas , Proantocianidinas , Fatores de Transcrição , Eriobotrya/genética , Eriobotrya/metabolismo , Proantocianidinas/metabolismo , Proantocianidinas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Frutas/genética , Frutas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismoRESUMO
Phytophthora infestans is a notorious oomycete pathogen that causes potato late blight. It secretes numerous effector proteins to manipulate host immunity. Understanding mechanisms underlying their host cell manipulation is crucial for developing disease resistance strategies. Here, we report that the conserved RXLR effector Pi05910 of P. infestans is a genotype-specific avirulence elicitor on potato variety Longshu 12 and contributes virulence by suppressing and destabilizing host glycolate oxidase StGOX4. By performing co-immunoprecipitation, yeast-two-hybrid assays, luciferase complementation imaging, bimolecular fluorescence complementation and isothermal titration calorimetry assays, we identified and confirmed potato StGOX4 as a target of Pi05910. Further analysis revealed that StGOX4 and its homologue NbGOX4 are positive immune regulators against P. infestans, as indicated by infection assays on potato and Nicotiana benthamiana overexpressing StGOX4 and TRV-NbGOX4 plants. StGOX4-mediated disease resistance involves enhanced reactive oxygen species accumulation and activated the salicylic acid signalling pathway. Pi05910 binding inhibited enzymatic activity and destabilized StGOX4. Furthermore, mutagenesis analyses indicated that the 25th residue (tyrosine, Y25) of StGOX4 mediates Pi05910 binding and is required for its immune function. Our results revealed that the core RXLR effector of P. infestans Pi05910 suppresses plant immunity by targeting StGOX4, which results in decreased enzymatic activity and protein accumulation, leading to enhanced plant susceptibility.
Assuntos
Oxirredutases do Álcool , Nicotiana , Phytophthora infestans , Doenças das Plantas , Solanum tuberosum , Phytophthora infestans/patogenicidade , Solanum tuberosum/microbiologia , Doenças das Plantas/microbiologia , Nicotiana/microbiologia , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/genética , Resistência à Doença/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Virulência , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Imunidade Vegetal/genéticaRESUMO
Oomycetes represent a unique group of plant pathogens that are destructive to a wide range of crops and natural ecosystems. Phytophthora species possess active small RNA (sRNA) silencing pathways, but little is known about the biological roles of sRNAs and associated factors in pathogenicity. Here we show that an AGO gene, PpAGO3, plays a major role in the regulation of effector genes hence the pathogenicity of Phytophthora parasitica. PpAGO3 was unique among five predicted AGO genes in P. parasitica, showing strong mycelium stage-specific expression. Using the CRISPR-Cas9 technology, we generated PpAGO3ΔRGG1-3 mutants that carried a deletion of 1, 2, or 3 copies of the N-terminal RGG motif (QRGGYD) but failed to obtain complete knockout mutants, which suggests its vital role in P. parasitica. These mutants showed increased pathogenicity on both Nicotiana benthamiana and Arabidopsis thaliana plants. Transcriptome and sRNA sequencing of PpAGO3ΔRGG1 and PpAGO3ΔRGG3 showed that these mutants were differentially accumulated with 25-26 nt sRNAs associated with 70 predicted cytoplasmic effector genes compared to the wild-type, of which 13 exhibited inverse correlation between gene expression and 25-26 nt sRNA accumulation. Transient overexpression of the upregulated RXLR effector genes, PPTG_01869 and PPTG_15425 identified in the mutants PpAGO3ΔRGG1 and PpAGO3ΔRGG3 , strongly enhanced N. benthamiana susceptibility to P. parasitica. Our results suggest that PpAGO3 functions together with 25-26 nt sRNAs to confer dynamic expression regulation of effector genes in P. parasitica, thereby contributing to infection and pathogenicity of the pathogen.
RESUMO
Small RNAs (sRNAs) are important non-coding RNA regulators, playing key roles in developmental regulation, transposon suppression, environmental response, host-pathogen interaction and other diverse biological processes. However, their roles in oomycetes are poorly understood. Here, we performed sRNA sequencing and RNA sequencing of Phytophthora parasitica at stages of vegetative growth and infection of Arabidopsis roots to examine diversity and function of sRNAs in P. parasitica, a model hemibiotrophic oomycete plant pathogen. Our results indicate that there are two distinct types of sRNA-generating loci in P. parasitica genome, giving rise to clusters of 25-26 nt and 21 nt sRNAs, respectively, with no significant strand-biases. The 25-26 nt sRNA loci lie predominantly in gene-sparse and repeat-rich regions, and overlap with over 7000 endogenous gene loci. These overlapped genes are typically P. parasitica species-specific, with no homologies to the sister species P. infestans. They include approximately 40% RXLR effector genes, 50% CRN effector genes and some elicitor genes. The transcripts of most of these genes could not be detected at both the vegetative mycelium and infection stages as revealed by RNA sequencing, indicating that the 25-26 nt sRNAs are associated with efficient silencing of these genes. The 21 nt sRNA loci typically overlap with the exon regions of highly expressed genes, suggesting that the biogenesis of the 21 nt sRNAs may be dependent on the level of gene transcription and that these sRNAs do not mediate efficient silencing of homologous genes. Analyses of the published P. infestans sRNA and mRNA sequencing data consistently show that the 25-26 nt sRNAs, but not the 21 nt sRNAs, may mediate efficient gene silencing in Phytophthora.