Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 466(7307): 739-43, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20686571

RESUMO

The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10(-15) s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump-probe measurement of the density matrix of valence electrons in atomic krypton ions. We generate the ions with a controlled few-cycle laser field and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse, which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes.

2.
Opt Lett ; 39(19): 5562-5, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25360928

RESUMO

Supercontinuum pulses covering the range from 1100 to 1700 nm with energies >1.0 mJ and excellent beam quality are generated via nonlinear spectral broadening of Cr:forsterite (1240 nm, 110 fs) pulses in pressurized molecular nitrogen. Our spectra, which extend over more than half an octave, offer an attractive alternative to intense few-cycle pulse synthesis in the 1-2 µm range and lend themselves as an important add-on to Cr:forsterite laser technologies.

3.
Opt Express ; 19(3): 1767-76, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21368991

RESUMO

We report the first experimental demonstration of a-periodic multilayer mirrors controlling the frequency sweep (chirp) of isolated attosecond XUV pulses. The concept was proven with about 200-attosecond pulses in the photon energy range of 100-130 eV measured via photoelectron streaking in neon. The demonstrated attosecond dispersion control is engineerable in a wide range of XUV photon energies and bandwidths. The resultant tailor-made attosecond pulses with highly enhanced photon flux are expected to significantly advance attosecond metrology and spectroscopy and broaden their range of applications.


Assuntos
Lentes , Refratometria/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Ultravioleta
4.
Opt Lett ; 35(13): 2248-50, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20596209

RESUMO

We demonstrate generation and measurement of intense deep-ultraviolet light pulses with a duration of approximately 2.8 fs (FWHM of the intensity envelope) and a wavelength distribution between 230 and 290 nm. They emerge via direct frequency upconversion of sub-4 fs laser pulses of a carrier wavelength of approximately 750 nm focused into an Ne-filled, quasi-static gas cell. Dispersion-free, third-order autocorrelation measurements provide access to their temporal intensity profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA