Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Inorg Chem ; 63(11): 4802-4806, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38428038

RESUMO

Three new ligands based on the alloxazine core appended with pyridyl coordinating groups have been designed, synthesized, and characterized. The ligands are revealed to be redox-active in DMF solution, as attested to by CV and combined CV/EPR studies. The spin of the reduced species appears to be delocalized on the alloxazine core, as attested to by DFT calculations. The coordination abilities of one of the ligands toward Cu2+ or Ni2+ 3d cations revealed the formation of the first alloxazine-based 3D coordination polymers, presenting strong π-π stacking and substantial cavities. Preliminarily charge/discharge experiments in Li batteries evidence Li+ insertion in such systems.

2.
Phys Chem Chem Phys ; 26(6): 4855-4869, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37994151

RESUMO

The design of enantiomerically pure circularly polarized luminescent (CPL) emitters would enormously benefit from the accurate and in-depth interpretation of the chiroptical properties by means of jointly (chiroptical) photophysical measurements and state-of-the-art theoretical investigation. Herein, computed and experimental (chiro-)optical properties of a series of eight enantiopure phosphorescent rhenium(I) tricarbonyl complexes are systematically compared in terms of electronic circular dichroism (ECD) and CPL. The compounds have general formula fac-[ReX(CO)3(N^CNHC)], where N^CNHC is a pyridyl benzannulated N-heterocyclic carbene deriving from a (substituted) 2-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium proligand and X = Cl, Br and I, and display structured red phosphorescence with long-lived (τ = 7.0-19.1 µs) excited-state lifetime and dissymmetry factors |gLum| up to 4 × 10-3. The mixing of the character of the lowest-lying emitting triplet excited state is finely modulated between ligand centred (3LC), metal-to-ligand charge transfer (3MLCT) and halogen-to-ligand charge transfer (3XLCT) by the nature of the ancillary halogen and the chromophoric N^CNHC ligand. The study unravels the effect exerted by the nature of the excited state onto the ECD and CPL activity and will help to pave the way to construct efficient CPL emitters by chemical design.

3.
Angew Chem Int Ed Engl ; 63(25): e202403417, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627209

RESUMO

Flavins and their alloxazine isomers are key chemical scaffolds for bioinspired electron transfer strategies. Their properties can be fine-tuned by functional groups, which must be introduced at an early stage of the synthesis as their aromatic ring is inert towards post-functionalization. We show that the introduction of a remote metal-binding redox site on alloxazine and flavin activates their aromatic ring towards direct C-H functionalization. Mechanistic studies are consistent with a synthetic sequence involving ground-state single electron transfer (SET) with an electrophilic source followed by radical-radical coupling. This unprecedented reactivity opens new opportunities in molecular editing of flavins by direct aromatic post-functionalization and the utility of the method is demonstrated with the site-selective C6 functionalization of alloxazine and flavin with a CF3 group, Br or Cl, that can be further elaborated into OH and aryl for chemical diversification.

4.
J Am Chem Soc ; 145(19): 10691-10699, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37154483

RESUMO

A multi-responsive receptor consisting of two (acridinium-Zn(II) porphyrin) conjugates has been designed. The binding constant between this receptor and a ditopic guest has been modulated (i) upon addition of nucleophiles converting acridinium moieties into the non-aromatic acridane derivatives and (ii) upon oxidation of the porphyrin units. A total of eight states has been probed for this receptor resulting from the cascade of the recognition and responsive events. Moreover, the acridinium/acridane conversion leads to a significant change of the photophysical properties, switching from electron to energy transfer processes. Interestingly, for the bis(acridinium-Zn(II) porphyrin) receptor, charge-transfer luminescence in the near-infrared has been observed.

5.
Chem Res Toxicol ; 36(11): 1804-1813, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37922503

RESUMO

Eugenol and isoeugenol are well acknowledged to possess antioxidant and thus cytoprotective activities. Yet both compounds are also important skin sensitizers, compelling the cosmetics and fragrance industries to notify their presence in manufactured products. While they are structurally very similar, they show significant differences in their sensitization properties. Consequently, eugenol and isoeugenol have been the subject of many mechanistic studies where the final oxidation forms, electrophilic ortho-quinone and quinone methide, are blamed as the reactive species forming an antigenic complex with nucleophilic residues of skin proteins, inducing skin sensitization. However, radical mechanisms could compete with such an electrophilic-nucleophilic pathway. The antioxidant activity results from neutralizing reactive oxygen radicals by the release of the phenolic hydrogen atom. The so-formed phenoxyl radicals can then fully delocalize upon the structure, becoming potentially reactive toward skin proteins at several positions. To obtain in-depth insights into such reactivity, we investigated in situ the formation of radicals from eugenol and isoeugenol using electron paramagnetic resonance combined with spin trapping in reconstructed human epidermis (RHE), mimicking human skin and closer to what may happen in vivo. Two modes of radical initiation were used, exposing RHE to (i) horseradish peroxidase (HRP), complementing RHE metabolic capacities, and mimicking peroxidases present in vivo or (ii) solar light using a AM 1.5 solar simulator. In both experimental approaches, where the antioxidant character of both compounds is revealed, oxygen- and carbon-centered radicals were formed in RHE. Our hypothesis is that such carbon radicals are relevant candidates to form antigenic entities prior to conversion into electrophilic quinones. On this basis, these studies suggest that pro- or prehapten fingerprints could be advanced depending on the radical initiation method. The introduction of HRP suggested that eugenol and isoeugenol behave as prohaptens, while when exposed to light, a prehapten nature could be highlighted.


Assuntos
Antioxidantes , Eugenol , Humanos , Antioxidantes/farmacologia , Eugenol/farmacologia , Pele , Carbono , Peroxidase do Rábano Silvestre
6.
Inorg Chem ; 62(12): 4903-4921, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36897338

RESUMO

A series of ten cationic complexes of the general formula [(C^C)Au(P^P)]X, where C^C = 4,4'-di-tert-butyl-1,1'-biphenyl, P^P is a diphosphine ligand, and X is a noncoordinating counteranion, have been synthesized and fully characterized by means of chemical and X-ray structural methods. All the complexes display a remarkable switch-on of the emission properties when going from a fluid solution to a solid state. In the latter, long-lived emission with lifetime τ = 1.8-83.0 µs and maximum in the green-yellow region is achieved with moderate to high photoluminescence quantum yield (PLQY). This emission is ascribed to an excited state with a mainly triplet ligand-centered (3LC) nature. This effect strongly indicates that rigidification of the environment helps to suppress nonradiative decay, which is mainly attributed to the large molecular distortion in the excited state, as supported by density functional theory (DFT) and time-dependent DFT (TD-DFT) computation. In addition, quenching intermolecular interactions of the emitter are avoided thanks to the steric hindrance of the substituents. Emissive properties are therefore restored efficiently. The influence of both diphosphine and anion has been investigated and rationalized as well. Using two complexes as examples and owing to their enhanced optical properties in the solid state, the first proof-of-concept of the use of gold(III) complexes as electroactive materials for the fabrication of light-emitting electrochemical cell (LEC) devices is herein demonstrated. The LECs achieve peak external quantum efficiency, current efficiency, and power efficiency up to ca. 1%, 2.6 cd A-1, and 1.1 lm W-1 for complex 1PF6 and 0.9%, 2.5 cd A-1, and 0.7 lm W-1 for complex 3, showing the potential use of these novel emitters as electroactive compounds in LEC devices.

7.
Inorg Chem ; 62(41): 16734-16751, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37781777

RESUMO

A rare example of pyrimidine-based ESIPT-capable compounds, 2-(2-hydroxyphenyl)-4-(1H-pyrazol-1-yl)-6-methylpyrimidine (HLH), was synthesized (ESIPT─excited state intramolecular proton transfer). Its reactions with zinc(II) salts under basic or acidic conditions afforded a dinuclear [Zn2LH2Cl2] complex and an ionic (H2LH)4[ZnCl4]2·3H2O solid. Another ionic solid, (H2LH)Br, was obtained from the solution of HLH acidified with HBr. In both ionic solids, the H+ ion protonates the same pyrimidinic N atom that accepts the O-H···N intramolecular hydrogen bond in the structure of free HLH, which breaks this hydrogen bond and switches off ESIPT in these compounds. This series of compounds which includes neutral HLH molecules and ionic (LH)- and (H2LH)+ species allowed us to elucidate the impact of protonation and coordination coupled deprotonation of HLH on the photoluminescence response and on altering the emission mechanism. The neutral HLH compound exhibits yellow emission as a result of the coexistence of two radiative decay channels: (i) T1 → S0 phosphorescence of the enol form and (ii) anti-Kasha S2 → S0 fluorescence of the keto form, which if feasible due to the large S2-S1 energy gap. However, owing to the efficient nonradiative decay through an energetically favorable conical intersection, the photoluminescence quantum yield of HLH is low. Protonation or deprotonation of the HLH ligand results in the significant blue-shift of the emission bands by more than 100 nm and boosts the quantum efficiency up to ca. 20% in the case of [Zn2LH2Cl2] and (H2LH)4[ZnCl4]2·3H2O. Despite both (H2LH)4[ZnCl4]2·3H2O and (H2LH)Br have the same (H2LH)+ cation in the structures, their emission properties differ significantly, whereas (H2LH)Br shows dual emission associated with two radiative decay channels: (i) S1 → S0 fluorescence and (ii) T1 → S0 phosphorescence, (H2LH)4[ZnCl4]2·3H2O exhibits only fluorescence. This difference in the emission properties can be associated with the external heavy atom effect in (H2LH)Br, which leads to faster intersystem crossing in this compound. Finally, a huge increase in the intensity of the phosphorescence of (H2LH)Br on cooling leads to pronounced luminescence thermochromism (violet emission at 300 K, sky-blue emission at 77 K).

8.
J Chem Phys ; 159(8)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37606333

RESUMO

In this work, we present a computational study that is able to predict the optical absorption and photoluminescent properties of the chiral Re(I) family of complexes [fac-ReX(CO)3L], where X is either Cl or I and L is N-heterocyclic carbene extended with π-conjugated [5]-helicenic unit. The computational strategy is based on carefully calibrated time dependent density functional theory calculations and operates in conjunction with an excited state dynamics approach to treat in addition to absorption (ABS) and photoluminescence (PL), electronic circular dichroism (ECD), and circularly polarized luminescence (CPL) spectroscopies, respectively. The employed computational approach provides, an addition, access to the computation of phosphorescence rates in terms of radiative and non-radiative relaxation processes. The chosen molecules consist of representative examples of non-helicenic (NHC) and helicenic diastereomers. The agreement between theoretical and experimental spectra, including absorption (ABS, ECD) and emission (PL, CPL), is excellent, validating a quantitative interpretation of the spectral features on the basis of natural transition orbitals and TheoDore analyses. It is demonstrated that across the set of studied Re(I) diastereomers, the emission process in the case of NHC diastereomers is metal to ligand charge transfer in nature and is dominated by the easy-axis anisotropy of the emissive excited multiplet. On the contrary, in the cases of the helicenic diastereomers, the emission process is intra ligand charge transfer in nature and is dominated by the respective easy-plane anisotropy of the emissive excited multiplet. This affects remarkably the photoluminescent properties of the molecules in terms of PL and CPL spectral band shapes, spin-vibronic coupling, relaxation times, and the respective quantum yields. Spin-vibronic coupling effects are investigated at the level of the state-average complete active space self-consistent field in conjunction with quasi-degenerate second order perturbation theory. It is in fact demonstrated that a spin-vibronic coupling mechanism controls the observed photophysics of this class of Re(I) complexes.

9.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770648

RESUMO

In this study, a series of new heteroleptic copper(I) bis(diimine) complexes are described. Using one highly hindered phenanthroline ligand and a second less-hindered diimine ligand led to unexpected results. Following a two-step one-pot method to obtain heteroleptic copper(I) complexes, an almost perfect tetrahedral coordination geometry around the copper(I) ion was obtained in several cases, despite the fact that at least one ligand was not sterically encumbered near the coordination site (at the position α to the nitrogen atoms of the ligand). This was demonstrated in the solid state by resolution of crystal structures, and these findings, corroborated by calculations, showed that the non-covalent interactions between the two diimine ligands present in these complexes were governing these structural features. The electronic properties of all complexes were also determined and the fluorescence lifetimes of two complexes were compared.

10.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049813

RESUMO

The binding behaviour of two ureido-hexahomotrioxacalix[3]arene derivatives bearing naphthyl (1) and pyrenyl (2) fluorogenic units at the lower rim towards selected nitroaromatic compounds (NACs) was evaluated. Their affinity, or lack of it, was determined by UV-Vis absorption, fluorescence and NMR spectroscopy. Different computational methods were also used to further investigate any possible complexation between the calixarenes and the NACs. All the results show no significant interaction between calixarenes 1 and 2 and the NACs in either dichloromethane or acetonitrile solutions. Moreover, the fluorescence quenching observed is only apparent and merely results from the absorption of the NACs at the excitation wavelength (inner filter effect). This evidence is in stark contrast with reports in the literature for similar calixarenes. A naphthyl urea dihomooxacalix[4]arene (3) is also subject to the inner filter effect and is shown to form a stable complex with trinitrophenol; however, the equilibrium association constant is greatly overestimated if no correction is applied (9400 M-1 vs 3000 M-1), again stressing the importance of taking into account the inner filter effect in these systems.

11.
Angew Chem Int Ed Engl ; 62(38): e202305569, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37345993

RESUMO

Two binuclear heteroleptic CuI complexes, namely Cu-NIR1 and Cu-NIR2, bearing rigid chelating diphosphines and π-conjugated 2,5-di(pyridin-2-yl)thiazolo[5,4-d]thiazole as the bis-bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emission when compared to the mononuclear counterparts (M1-M2) and enables shifting luminescence into the near-infrared (NIR) region in both solution and solid state, showing emission maximum at ca. 750 and 712 nm, respectively. The radiative process is assigned to an excited state with triplet metal-to-ligand charge transfer (3 MLCT) character as demonstrated by in-depth photophysical and computational investigation. Noteworthy, X-ray analysis of the binuclear complexes unravels two interligand π-π-stacking interactions yielding a doubly locked structure that disfavours flattening of the tetrahedral coordination around the CuI centre in the excited state and maintain enhanced NIR luminescence. No such interaction is present in M1-M2. These findings prompt the successful use of Cu-NIR1 and Cu-NIR2 in NIR light-emitting electrochemical cells (LECs), which display electroluminescence maximum up to 756 nm and peak external quantum efficiency (EQE) of 0.43 %. Their suitability for the fabrication of white-emitting LECs is also demonstrated. To the best of our knowledge, these are the first examples of NIR electroluminescent devices based on earth-abundant CuI emitters.

12.
J Am Chem Soc ; 144(13): 5902-5909, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35316065

RESUMO

A photoinduced arylation of N-substituted acridinium salts has been developed and has exhibited a high functional group tolerance (e.g., halogen, nitrile, ketone, ester, and nitro). A broad range of well-decorated C9-arylated acridinium-based catalysts with fine-tuned photophysical and photochemical properties, namely, excited-state lifetimes and redox potentials have been synthetized in a one-step procedure. These functionalized acridinium salts were later evaluated in the photoredox-catalyzed fragmentation of 1,2-diol derivatives (lignin models). Among them, 2-bromophenyl substituted N-methyl acridinium has outperformed all photoredox catalysts, including commercial Fukuzumi's catalyst, for the selective CßO-Ar bond cleavage of diol monoarylethers to afford 1,2-diols in good yields.


Assuntos
Nitrilas , Sais , Catálise , Nitrilas/química , Oxirredução
13.
Chemistry ; 28(10): e202104234, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34984746

RESUMO

Using a pincer platform based on a bridgehead NHC donor with functional side arms, the combined effect of increased flexibility in six-membered pyrimidine-type heterocycles compared to the more often studied five-membered imidazole, and rigidity of phosphane side arms was examined. The unique features observed include: 1) the reaction of the azolium Csp2 -H bond with [Ni(cod)2 ] affording a carbanionic ligand in [NiCl(PCsp3 H P)] (8) rather than a carbene; 2) its transformation into the NHC, hydrido complex [NiH(PCNHC P)]PF6 (9) upon halide abstraction; 3) ethylene insertion into the Ni-H bond of the latter and ethyl migration to the N-C-N carbon atom of the heterocycle in [Ni(PCEt P)]PF6 (10); and 4) an unprecedented C-P bond activation transforming the P-CNHC -P pincer ligand of 8 in a C-CNHC -P pincer and a terminal phosphanido ligand in [Ni(PPh2 )(CCNHC P)] (15). The data are supported by nine crystal structure determinations and theoretical calculations provided insights into the mechanisms of these transformations, which are relevant to stoichiometric and catalytic steps of general interest.

14.
Chemistry ; 28(41): e202200507, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35543286

RESUMO

We report the first examples of metal-promoted double geminal activation of C(sp3 )-H bonds of the N-CH2 -N moiety in an imidazole-type heterocycle, leading to nickel and palladium N-heterocyclic carbene complexes under mild conditions. Reaction of the new electron-rich diphosphine 1,3-bis((di-tert-butylphosphaneyl)methyl)-2,3-dihydro-1H-benzo[d]imidazole (1) with [PdCl2 (cod)] occurred in a stepwise fashion, first by single C-H bond activation yielding the alkyl pincer complex [PdCl(PC sp 3 H P)] (3) with two trans phosphane donors and a covalent Pd-C sp 3 bond. Activation of the C-H bond of the resulting α-methine C sp 3 H-M group occurred subsequently when 3 was treated with HCl to yield the NHC pincer complex [PdCl(PCNHC P)]Cl (2). Treatment of 1 with [NiBr2 (dme)] also afforded a NHC pincer complex, [NiBr(PCNHC P)]Br (6), but the reactions leading to the double geminal C-H bond activation of the N-CH2 -N group were too fast to allow identification or isolation of an intermediate analogous to 3. The determination of six crystal structures, the isolation of reaction intermediates and DFT calculations provided the basis for suggesting the mechanism of the stepwise transformation of a N-CH2 -N moiety in the N-CNHC -N unit of NHC pincer complexes and explain the key differences observed between the Pd and Ni chemistries.

15.
Chemistry ; 28(71): e202202840, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36305314

RESUMO

A [2]rotaxane built around a multi-responsive bis-acridinium macrocycle has been synthesized. Structural investigation has confirmed the interlocked nature of the molecule, and MD simulations illuminated its conformational dynamics with atomic resolution. Both halochromic and redox-switching properties were explored to shed light on the mechanical response and electronic changes that occur in the bis-acridinium [2]rotaxane. The topology of the rotaxane led to different mechanical behaviors upon addition of hydroxide ions or reduction that were easily detected by UV/Vis spectroscopy and electrochemistry.


Assuntos
Rotaxanos , Rotaxanos/química , Conformação Molecular
16.
Inorg Chem ; 61(19): 7296-7307, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35507920

RESUMO

The steric strain around copper(I) in typical [Cu(NNR)2]+ complexes, where NNR is a diimine ligand substituted in α-positions of the nitrogen atoms by R, is known to strongly impact the excited-state properties. Generally speaking, the larger the R, the longer the emission lifetime and the higher the quantum yield. However, the stability of the coordination scaffold can be at stake if the steric strain imposed by R is too large. In this work, we explore a way of fine-tuning the steric strain around Cu(I) to reach a balance between high emission quantum yield and stability in a highly bulky copper(I) complex. Taking stable [Cu(dipp)2]+ and unstable [Cu(dtbp)2]+ (where dipp and dtbp are, respectively, 2,9-diisopropyl-1,10-phenanthroline and 2,9-di-tert-butyl-1,10-phenanthroline) as the boundary of two least and most sterically strained structures, we designed and characterized the nonsymmetrical ligand 2-isopropyl-9-tert-butyl-1,10-phenanthroline (L1) and corresponding complex [Cu(L1)2]+ (Cu1). The key experimental findings are that Cu1 exhibits a rigid tetrahedral geometry in the ground state, close to that of [Cu(dtbp)2]+ and with an intermediate stability between that of [Cu(dipp)2]+ and [Cu(dtbp)2]+. Conversely, the nonsymmetrical nature of ligand L1 leads to a shorter emission lifetime and smaller quantum yield than those of either [Cu(dipp)2]+ or [Cu(dtbp)2]+. This peculiar behavior is rationalized through the in depth analysis of the ultrafast dynamics of the excited state measured with optical transient absorption spectroscopy and theoretical calculations performed on the ground and excited state of Cu1. Our main findings are that the obtained complex is significantly more stable than [Cu(dtbp)2]+ despite the sterically strained coordination sphere. The nonsymmetrical nature of the ligand translates into a strongly distorted structure in the excited state. The distortion can be described as a rocking motion of one ligand, entailing the premature extinction of the excited state via several deactivation channels.

17.
Phys Chem Chem Phys ; 24(4): 2309-2317, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35015003

RESUMO

The ability of [Ru(bpy)2(bpym)]2+ (bpy = 2,2'-bipyridine; bpym = 2,2'-bipyrimidine) to probe specifically heavy cations has been investigated by means of density functional theory for transition metals, group 12 elements and Pb2+. On the basis of the calculated Gibbs free energies of complexation in water it is shown that all reactions are favorable with negative enthalpies except for Hg2+, with the transition metal cations forming stable bi-metallic complexes by coordination to the bpym ligand. Comparison between the optical and photophysical properties of the Ru2+ probe and those of the coordination compounds does not demonstrate a high selectivity due to very similar characteristics of the absorption and emission spectra. Whereas by complexation the lowest metal-to-ligand-charge-transfer (MLCT) shoulder of [Ru(bpy)2(bpym)]2+ at 462 nm is more or less shifted to the red as a function of the cation, the second MLCT band at 415 nm, less sensitive to the complexation, gains in intensity and is slightly blue-shifted. The visible MLCT emission of [Ru(bpy)2(bpym)]2+ at 706 nm is altered by complexation leading to near IR (800-900 nm) emission in most of the coordination compounds. Complexation to some transition metal cations (Fe, Co, Rh and Pd) generates low-lying metal-centered (MC) excited states that quench luminescence. In contrast to the conclusion of experimental findings by Kumar et al. (Chem. Commun. 2014, 50, 8488-8490), [Ru(bpy)2(bpym)]2+ cannot be proposed as a fast and selective probe for monitoring Pd2+ in aqueous media. Indeed, it does not possess the optical and photophysical characteristics necessary to discriminate Pd2+ ions over a variety of other cations.

18.
Chemphyschem ; 22(5): 509-515, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33241892

RESUMO

The electronic and nuclear structures of a series of [Cu(2,9-(X)2 -phen)2 ]+ copper(I) complexes (phen=1,10-phenanthroline; X=H, F, Cl, Br, I, Me, CN) in their ground and excited states are investigated by means of density functional theory (DFT) and time-dependent (TD-DFT) methods. Subsequent Born-Oppenheimer molecular dynamics is used for exploring the T1 potential energy surface (PES). The T1 and S1 energy profiles, which connect the degenerate minima induced by ligand flattening and Cu-N bond symmetry breaking when exciting the molecule are calculated as well as transition state (TS) structures and related energy barriers. Three nuclear motions drive the photophysics, namely the coordination sphere asymmetric breathing, the well-documented pseudo Jahn-Teller (PJT) distortion and the bending of the phen ligands. This theoretical study reveals the limit of the static picture based on potential energy surfaces minima and transition states for interpreting the luminescent and TADF properties of this class of molecules. Whereas minor asymmetric Cu-N bonds breathing accompanies the metal-to-ligand-charge-transfer re-localization over one or the other phen ligand, the three nuclear movements participate to the flattening of the electronically excited complexes. This leads to negligible energy barriers whatever the ligand X for the first process and significant ligand dependent energy barriers for the formation of the flattened conformers. Born-Oppenheimer (BO) dynamics simulation of the structural evolution on the T1 PES over 11 ps at 300 K confirms the fast backwards and forwards motion of the phenanthroline within 200-300 fs period and corroborates the presence of metastable C2 structures.

19.
Molecules ; 27(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35011259

RESUMO

We study the quantum chemical nature of the Lead(II) valence basins, sometimes called the lead "lone pair". Using various chemical interpretation tools, such as molecular orbital analysis, natural bond orbitals (NBO), natural population analysis (NPA) and electron localization function (ELF) topological analysis, we study a variety of Lead(II) complexes. A careful analysis of the results shows that the optimal structures of the lead complexes are only governed by the 6s and 6p subshells, whereas no involvement of the 5d orbitals is found. Similarly, we do not find any significant contribution of the 6d. Therefore, the Pb(II) complexation with its ligand can be explained through the interaction of the 6s2 electrons and the accepting 6p orbitals. We detail the potential structural and dynamical consequences of such electronic structure organization of the Pb (II) valence domain.

20.
Angew Chem Int Ed Engl ; 60(4): 2084-2088, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33037702

RESUMO

The employment of the hexyl-substituted anion [HexCB11 Cl11 ]- allowed the synthesis of a ZnII species, Zn[HexCB11 Cl11 ]2 , 3, in which the Zn2+ cation is only weakly coordinated to two carborate counterions and that is soluble in low polarity organic solvents such as bromobenzene. DOSY NMR studies show the facile displacement of at least one of the counterions, and this near nakedness of the cation results in high catalytic activity in the hydrosilylation of 1-hexene and 1-methyl-1cyclohexene. Fluoride ion affinity (FIA) calculations reveal a solution Lewis acidity of 3 (FIA=262.1 kJ mol-1 ) that is higher than that of the landmark Lewis acid B(C6 F5 )3 (FIA=220.5 kJ mol-1 ). This high Lewis acidity leads to a high activity in catalytic CO2 and Ph2 CO reduction by Et3 SiH and hydrogenation of 1,1-diphenylethylene using 1,4-cyclohexadiene as the hydrogen source. Compound 3 was characterized by multinuclear NMR spectroscopy, mass spectrometry, single crystal X-ray diffraction, and DFT studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA