Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 111(30): 8762-74, 2007 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-17608523

RESUMO

The synthesis and redox properties of a series of free-base and metal(II) quinoxalino[2,3-b']porphyrins and their use in an investigation of the substituent effects on the degree of communication between the porphyrin and its beta,beta'-fused quinoxalino component are reported. ESR, thin-layer spectroelectrochemistry, and quantum chemical calculations of the resultant radical anions from one-electron reduction indicate that localization of the unpaired electron across both the porphyrin and the fused quinoxalino group can be controlled, the system as a whole behaving as a highly polarizable pi-expanded porphyrin radical anion. ESR studies on the radical anions of zinc(II) quinoxalino[2,3-b']porphyrin derivatives indicate that nitrogen-atom spin distribution changes as a function of chemical substitution: 27% quinoxaline character when the porphyrin ring bears a 7-nitro substituent, 34% quinoxaline character in the unsubstituted parent, and 51-61% nitroquinoxaline character when the quinoxalino unit has one or more nitro groups. Close analogies are found between the calculated and observed nitrogen-atom spin distributions, indicating that the calculations embody the key chemical effects. The calculations also indicate that the nitrogen-atom spin distributions closely parallel the important total porphyrin, quinoxaline, and nitro spin distributions, indicating that the observed quantities realistically depict the change in the nature of the delocalization of the radical anion as a function of chemical substitution. The profound effects observed indicate long-range communication of the type that is essential in molecular electronics applications.

2.
J Phys Chem A ; 112(3): 556-70, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18171032

RESUMO

Through-porphyrin electronic communication is investigated using "linear-type" and "corner-type" bis(quinoxalino)porphyrins in free-base form and their ZnII, CuII, NiII, and PdII derivatives. These compounds are porphyrins with quinoxalines fused on opposite or adjacent beta,beta'-pyrrolic positions; they were synthesized from 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)-porphyrin-2,3,12,13- and -2,3,7,8-tetraone, respectively, by reaction with 1,2-phenylenediamine. The degree of electron spin delocalization into the fused rings in the pi-radical anions of the free-base and metal(II) bisquinoxalinoporphyrins was elucidated by electrochemistry, UV-vis absorption, and electron spin resonance (ESR) spectra of the singly reduced species and density functional theory calculations. Hyperfine splitting patterns in the ESR spectra of the pi-radical anions show that symmetric molecules have delocalized electron spin, indicating that significant inter-quinoxaline interactions are mediated through the central porphyrin unit, these interactions being sufficient to guarantee through-molecule conduction. However, when molecular symmetry is broken by tautomeric exchange of the inner nitrogen hydrogens in the free-base porphyrin with a corner-type quinoxaline substitution pattern, the pi-radical anion becomes confined so that one quinoxaline group is omitted from spin delocalization. This indicates the appearance of a unidirectional barrier to through-molecule conduction, suggesting a new motif for chemically controlled rectification.

3.
J Am Chem Soc ; 129(20): 6576-88, 2007 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-17469827

RESUMO

Porphyrin-2,3-diones and porphyrin-2,3,7,8- and porphyrin-2,3,12,13-tetraones were shown to have a redox-active unit that can function independently of the macrocycle at large. Electroreduction of 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)porphyrin-2,3-diones [(P-dione)M] and the corresponding -2,3,12,13-tetraones [L-(P-tetraone)M] and -2,3,7,8-tetraones [C-(P-tetraone)M], where M = 2H, CuII, ZnII, NiII, and PdII was investigated and the products were characterized by ESR and thin-layer UV-visible spectroelectrochemistry. Electrochemical and spectroelectrochemical data show that the first two reductions of the porphyrin-diones and the first three reductions of the porphyrin-tetraones occur at the dione units. This was confirmed by ESR spectra of first reduction products which show that the electron spin is totally localized on a semidione unit, independent of the central metal ion and of the number and location of dione units. ESR spectra of the radical anions derived from free-base porphyrin-2,3-dione [(P-dione)2H] and porphyrin-2,3,12,13-tetraone [L-(P-tetraone)2H] confirm the trans-arrangement of the two inner protons and their location on nonsubstituted pyrrolic rings, thereby maintaining an 18-atom 18-pi electron bacteriochlorin-like aromatic delocalization pathway. The redox unit is not similarly isolated in the corner free-base porphyrin-2,3,7,8-tetraone [C-(P-tetraone)2H]. A one-electron reduction of C-(P-tetraone)2H leads to the formation of a tautomer with trans inner hydrogens with one residing on the N of the ring with the reduced unit as the only detectable product. This process is favorable because it creates a more delocalized 18-atom 18-pi electron aromatic pathway. This result is consistent with the measured redox potentials which show the first reduction of C-(P-tetraone)2H to be substantially easier than (P-dione)2H or L-(P-tetraone)2H.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA