Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Immunother ; 46(1): 1-4, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36472581

RESUMO

T-cell immunoglobulin and mucin domain 3 (TIM3) is emerging as a potential target for antibody-based checkpoint blockade. However, the efficacy of TIM3 blockade in combination with other treatment modalities, has not been extensively studied. In the current work we combined TIM3 blockade with myxoma virus-based oncolytic virotherapy (OV). Our results demonstrate that myxoma virus's ability to initiate an immense antitumor immune response complements the ability of TIM3 blockade to shift the tumor microenvironment to a more proinflammatory state. As a result, the combination of TIM3 blockade and OV is able to completely eradicate established disease, while neither monotherapy is effective. These data represent the first demonstration that OV can enhance the efficacy of TIM3 blockade and suggest that this treatment may need to be incorporated into more aggressive, combinatorial regimens in order to fulfill its potential as an immunotherapeutic.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Microambiente Tumoral
2.
Stem Cell Res Ther ; 14(1): 49, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949528

RESUMO

BACKGROUND: Therapeutic interventions that optimize angiogenic activities may reduce rates of end-stage kidney disease, critical limb ischemia, and lower extremity amputations in individuals with diabetic kidney disease (DKD). Infusion of autologous mesenchymal stromal cells (MSC) is a promising novel therapy to rejuvenate vascular integrity. However, DKD-related factors, including hyperglycemia and uremia, might alter MSC angiogenic repair capacity in an autologous treatment approach. METHODS: To explore the angiogenic activity of MSC in DKD, the transcriptome of adipose tissue-derived MSC obtained from DKD subjects was compared to age-matched controls without diabetes or kidney impairment. Next-generation RNA sequencing (RNA-seq) was performed on MSC (DKD n = 29; Controls n = 9) to identify differentially expressed (DE; adjusted p < 0.05, |log2fold change|> 1) messenger RNA (mRNA) and microRNA (miRNA) involved in angiogenesis (GeneCards). Paracrine-mediated angiogenic repair capacity of MSC conditioned medium (MSCcm) was assessed in vitro using human umbilical vein endothelial cells incubated in high glucose and indoxyl sulfate for a hyperglycemic, uremic state. RESULTS: RNA-seq analyses revealed 133 DE mRNAs (77 upregulated and 56 down-regulated) and 208 DE miRNAs (119 up- and 89 down-regulated) in DKD-MSC versus Control-MSC. Interestingly, miRNA let-7a-5p, which regulates angiogenesis and participates in DKD pathogenesis, interacted with 5 angiogenesis-associated mRNAs (transgelin/TAGLN, thrombospondin 1/THBS1, lysyl oxidase-like 4/LOXL4, collagen 4A1/COL4A1 and collagen 8A1/COL8A1). DKD-MSCcm incubation with injured endothelial cells improved tube formation capacity, enhanced migration, reduced adhesion molecules E-selectin, vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 mRNA expression in endothelial cells. Moreover, angiogenic repair effects did not differ between treatment groups (DKD-MSCcm vs. Control-MSCcm). CONCLUSIONS: MSC from individuals with DKD show angiogenic transcriptome alterations compared to age-matched controls. However, angiogenic repair potential may be preserved, supporting autologous MSC interventions to treat conditions requiring enhanced angiogenic activities such as DKD, diabetic foot ulcers, and critical limb ischemia.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/terapia , Nefropatias Diabéticas/metabolismo , Isquemia Crônica Crítica de Membro , Transcriptoma , Neovascularização Fisiológica/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , RNA Mensageiro/metabolismo , Diabetes Mellitus/metabolismo , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo
3.
Cell Rep ; 35(13): 109293, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34192535

RESUMO

While the immediate and transitory response of breast cancer cells to pathological stiffness in their native microenvironment has been well explored, it remains unclear how stiffness-induced phenotypes are maintained over time after cancer cell dissemination in vivo. Here, we show that fibrotic-like matrix stiffness promotes distinct metastatic phenotypes in cancer cells, which are preserved after transition to softer microenvironments, such as bone marrow. Using differential gene expression analysis of stiffness-responsive breast cancer cells, we establish a multigenic score of mechanical conditioning (MeCo) and find that it is associated with bone metastasis in patients with breast cancer. The maintenance of mechanical conditioning is regulated by RUNX2, an osteogenic transcription factor, established driver of bone metastasis, and mitotic bookmarker that preserves chromatin accessibility at target gene loci. Using genetic and functional approaches, we demonstrate that mechanical conditioning maintenance can be simulated, repressed, or extended, with corresponding changes in bone metastatic potential.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Fenômenos Biomecânicos , Medula Óssea/patologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Mecanotransdução Celular , Invasividade Neoplásica , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA