Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 159(6): 1277-89, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25480293

RESUMO

Glycosylation processes are under high natural selection pressure, presumably because these can modulate resistance to infection. Here, we asked whether inactivation of the UDP-galactose:ß-galactoside-α1-3-galactosyltransferase (α1,3GT) gene, which ablated the expression of the Galα1-3Galß1-4GlcNAc-R (α-gal) glycan and allowed for the production of anti-α-gal antibodies (Abs) in humans, confers protection against Plasmodium spp. infection, the causative agent of malaria and a major driving force in human evolution. We demonstrate that both Plasmodium spp. and the human gut pathobiont E. coli O86:B7 express α-gal and that anti-α-gal Abs are associated with protection against malaria transmission in humans as well as in α1,3GT-deficient mice, which produce protective anti-α-gal Abs when colonized by E. coli O86:B7. Anti-α-gal Abs target Plasmodium sporozoites for complement-mediated cytotoxicity in the skin, immediately after inoculation by Anopheles mosquitoes. Vaccination against α-gal confers sterile protection against malaria in mice, suggesting that a similar approach may reduce malaria transmission in humans.


Assuntos
Escherichia coli/fisiologia , Imunoglobulina M/imunologia , Malária Falciparum/imunologia , Malária Falciparum/transmissão , Plasmodium/fisiologia , Polissacarídeos/imunologia , Adulto , Animais , Anopheles/parasitologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Autoantígenos/imunologia , Linhagem Celular Tumoral , Criança , Escherichia coli/classificação , Escherichia coli/imunologia , Feminino , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Trato Gastrointestinal/microbiologia , Vida Livre de Germes , Humanos , Imunoglobulina M/sangue , Malária Falciparum/microbiologia , Malária Falciparum/parasitologia , Camundongos , Plasmodium/classificação , Plasmodium/crescimento & desenvolvimento , Plasmodium/imunologia , Plasmodium falciparum/imunologia , Plasmodium falciparum/fisiologia , Esporozoítos/imunologia , Receptor Toll-Like 9/agonistas
2.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892340

RESUMO

Severe malarial anemia (SMA) increases the morbidity and mortality of Plasmodium, the causative agent of malaria. SMA is mainly developed by children and pregnant women in response to the infection. It is characterized by ineffective erythropoiesis caused by impaired erythropoietin (EPO) signaling. To gain new insights into the pathogenesis of SMA, we investigated the relationship between the immune system and erythropoiesis, conducting comparative analyses in a mouse model of malaria. Red blood cell (RBC) production was evaluated in infected and reinfected animals to mimic endemic occurrences. Higher levels of circulating EPO were observed in response to (re)infection. Despite no major differences in bone marrow erythropoiesis, compensatory mechanisms of splenic RBC production were significantly reduced in reinfected mice. Concomitantly, a pronounced immune response activation was observed in erythropoietic organs of reinfected animals in relation to single-infected mice. Aged mice were also used to mimic the occurrence of malaria in the elderly. The increase in symptom severity was correlated with the enhanced activation of the immune system, which significantly impaired erythropoiesis. Immunocompromised mice further support the existence of an immune-shaping regulation of RBC production. Overall, our data reveal the strict correlation between erythropoiesis and immune cells, which ultimately dictates the severity of SMA.


Assuntos
Anemia , Eritropoese , Imunomodulação , Malária , Animais , Camundongos , Malária/imunologia , Malária/parasitologia , Anemia/imunologia , Eritrócitos/parasitologia , Eritrócitos/imunologia , Eritrócitos/metabolismo , Modelos Animais de Doenças , Eritropoetina/metabolismo , Feminino , Baço/imunologia , Baço/patologia , Baço/metabolismo , Camundongos Endogâmicos C57BL
3.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175654

RESUMO

Parkinson's disease (PD) is a multifactorial neurodegenerative pathology characterized by the progressive loss of dopaminergic neurons in the substantia nigra of the brain. Aging is considered the main risk factor for the development of idiopathic PD. However, immunity and inflammation play a crucial role in the pathogenesis of this disorder. In mice, we showed that pro-inflammatory priming of the brain sensitizes to severe PD development, regardless of animal age. Age-related sub-acute inflammation, as well as the activation of the immune response upon exposure to harmful stimuli, enhances PD manifestations. The severity of PD is influenced by the engagement of host resistance mechanisms against infection based on the removal of iron (Fe) from the circulation. The sequestration of Fe by immune cells prevents pathogens from proliferating. However, it leads to the formation of a Fe-loaded circulating compartment. When entering the brain through a compromised blood-brain barrier, Fe-loaded immune cells contribute to enhancing neuroinflammation and brain Fe overload. Thus, pro-inflammatory priming of the brain exacerbates neuronal damage and represents a risk factor for the development of severe PD symptoms. Further investigations are now required to better understand whether therapeutic interventions inhibiting this phenomenon might protect against PD.


Assuntos
Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Encéfalo/patologia , Substância Negra/patologia , Inflamação/patologia , Neurônios Dopaminérgicos/patologia
4.
Immunity ; 39(5): 874-84, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24184056

RESUMO

Severe sepsis remains a poorly understood systemic inflammatory condition with high mortality rates and limited therapeutic options in addition to organ support measures. Here we show that the clinically approved group of anthracyclines acts therapeutically at a low dose regimen to confer robust protection against severe sepsis in mice. This salutary effect is strictly dependent on the activation of DNA damage response and autophagy pathways in the lung, as demonstrated by deletion of the ataxia telangiectasia mutated (Atm) or the autophagy-related protein 7 (Atg7) specifically in this organ. The protective effect of anthracyclines occurs irrespectively of pathogen burden, conferring disease tolerance to severe sepsis. These findings demonstrate that DNA damage responses, including the ATM and Fanconi Anemia pathways, are important modulators of immune responses and might be exploited to confer protection to inflammation-driven conditions, including severe sepsis.


Assuntos
Antraciclinas/farmacologia , Antibacterianos/farmacologia , Reparo do DNA/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Peritonite/tratamento farmacológico , Sepse/prevenção & controle , Infecções por Adenoviridae/imunologia , Animais , Antraciclinas/uso terapêutico , Antibacterianos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Proteína 7 Relacionada à Autofagia , Ceco/lesões , Dano ao DNA , Epirubicina/administração & dosagem , Epirubicina/farmacologia , Epirubicina/uso terapêutico , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/fisiologia , Inflamação , Mediadores da Inflamação/análise , Injeções Intraperitoneais , Pulmão/metabolismo , Meropeném , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/fisiologia , Especificidade de Órgãos , Peritonite/etiologia , Peritonite/genética , Peritonite/imunologia , Peritonite/fisiopatologia , Infecções Respiratórias/imunologia , Choque Séptico/prevenção & controle , Tienamicinas/uso terapêutico , Irradiação Corporal Total
5.
Proc Natl Acad Sci U S A ; 116(12): 5681-5686, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833408

RESUMO

Malaria, the disease caused by Plasmodium spp. infection, remains a major global cause of morbidity and mortality. Host protection from malaria relies on immune-driven resistance mechanisms that kill Plasmodium However, these mechanisms are not sufficient per se to avoid the development of severe forms of disease. This is accomplished instead via the establishment of disease tolerance to malaria, a defense strategy that does not target Plasmodium directly. Here we demonstrate that the establishment of disease tolerance to malaria relies on a tissue damage-control mechanism that operates specifically in renal proximal tubule epithelial cells (RPTEC). This protective response relies on the induction of heme oxygenase-1 (HMOX1; HO-1) and ferritin H chain (FTH) via a mechanism that involves the transcription-factor nuclear-factor E2-related factor-2 (NRF2). As it accumulates in plasma and urine during the blood stage of Plasmodium infection, labile heme is detoxified in RPTEC by HO-1 and FTH, preventing the development of acute kidney injury, a clinical hallmark of severe malaria.


Assuntos
Heme/metabolismo , Rim/metabolismo , Malária/fisiopatologia , Animais , Apoferritinas/metabolismo , Linhagem Celular , Progressão da Doença , Células Epiteliais/metabolismo , Ferritinas/metabolismo , Ferritinas/fisiologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/fisiologia , Humanos , Tolerância Imunológica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Oxirredutases , Plasmodium berghei/metabolismo , Plasmodium berghei/parasitologia , Regulação para Cima
6.
J Infect Dis ; 216(7): 907-918, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973651

RESUMO

Background: Recent evidence indicates a robust competition between the host and mycobacteria for iron acquisition during mycobacterial infection. Variable effects of iron supplementation on the susceptibility to mycobacterial infection have been reported. In this study, we revisited the effects of an experimental iron-enriched diet on Mycobacterium bovis bacille Calmette-Guerin (BCG) infection. Methods: Mice fed a standard diet or a diet moderately enriched with iron were infected with M. bovis BCG expressing green fluorescent protein. Colony-forming unit numbers, host myeloid cell counts, cell recruitment, cytokine production, and iron gene expression were determined at different stages of infection. Bone marrow-derived macrophages incubated with or without iron were also used to measure bacterial uptake, levels of inflammation markers, and iron gene expression. Results: In vivo analysis of BCG-infected mice revealed that moderate iron supplementation reduced inflammation, as measured by decreased proinflammatory cytokine levels and neutrophil recruitment and enhanced T-cell recruitment in granulomas, and decreased the bacterial load. Enhanced bacterial clearance in the liver correlated with upregulation of the gene encoding hepcidin, which is known to have antimicrobial proprieties, and with sequestration of iron in tissues. In cultured macrophages, iron supplementation induced reactive oxygen species and reduced uptake and intracellular growth of BCG. Conclusion: Moderate iron diet supplementation diminished inflammation and growth of M. bovis BCG via enhanced reactive oxygen species production, immune cell activation, and local hepcidin expression.


Assuntos
Citocinas/metabolismo , Hepcidinas/metabolismo , Ferro da Dieta/farmacologia , Mycobacterium bovis/imunologia , Linfócitos T/fisiologia , Tuberculose/microbiologia , Animais , Citocinas/genética , Hepcidinas/genética , Ferro/metabolismo , Fígado/metabolismo , Fígado/microbiologia , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Tuberculose/imunologia , Regulação para Cima
7.
IUBMB Life ; 69(6): 442-450, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28474474

RESUMO

Iron (Fe) is essential to almost all organisms, as required by cells to satisfy metabolic needs and accomplish specialized functions. Its ability to exchange electrons between different substrates, however, renders it potentially toxic. Fine tune-mechanisms are necessary to maintain Fe homeostasis and, as such, to prevent its participation into the Fenton reaction and generation of oxidative stress. These are particularly important in the context of inflammation/infection, where restricting Fe availability to invading pathogens is one, if not, the main host defense strategy against microbial growth. The ability of Fe to modulate several aspects of the immune response is associated with a number of "costs" and "benefits", some of which have been described in this review. © 2017 IUBMB Life, 69(6):442-450, 2017.


Assuntos
Infecções Bacterianas/metabolismo , Células Dendríticas/metabolismo , Ferro/metabolismo , Linfócitos/metabolismo , Macrófagos/metabolismo , Micoses/metabolismo , Animais , Bactérias/metabolismo , Bactérias/patogenicidade , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Fungos/metabolismo , Fungos/patogenicidade , Absorção Gastrointestinal/fisiologia , Homeostase/fisiologia , Humanos , Imunidade Inata , Inflamação , Linfócitos/imunologia , Linfócitos/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Micoses/imunologia , Micoses/microbiologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo
8.
Trends Immunol ; 35(10): 483-94, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25182198

RESUMO

Immune-driven resistance mechanisms are the prevailing host defense strategy against infection. By contrast, disease tolerance mechanisms limit disease severity by preventing tissue damage or ameliorating tissue function without interfering with pathogen load. We propose here that tissue damage control underlies many of the protective effects of disease tolerance. We explore the mechanisms of cellular adaptation that underlie tissue damage control in response to infection as well as sterile inflammation, integrating both stress and damage responses. Finally, we discuss the potential impact of targeting these mechanisms in the treatment of disease.


Assuntos
Tolerância Imunológica/imunologia , Animais , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/imunologia
9.
Biochem J ; 472(1): 1-15, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26518749

RESUMO

Ferritins, the main intracellular iron storage proteins, have been studied for over 60 years, mainly focusing on the mammalian ones. This allowed the elucidation of the structure of these proteins and the mechanisms regulating their iron incorporation and mineralization. However, ferritin is present in most, although not all, eukaryotic cells, comprising monocellular and multicellular invertebrates and vertebrates. The aim of this review is to provide an update on the general properties of ferritins that are common to various eukaryotic phyla (except plants), and to give an overview on the structure, function and regulation of ferritins. An update on the animal models that were used to characterize H, L and mitochondrial ferritins is also provided. The data show that ferritin structure is highly conserved among different phyla. It exerts an important cytoprotective function against oxidative damage and plays a role in innate immunity, where it also contributes to prevent parenchymal tissue from the cytotoxicity of pro-inflammatory agonists released by the activation of the immune response activation. Less clear are the properties of the secretory ferritins expressed by insects and molluscs, which may be important for understanding the role played by serum ferritin in mammals.


Assuntos
Apoferritinas/metabolismo , Citoproteção , Eucariotos/metabolismo , Ferritinas/metabolismo , Ferro/metabolismo , Sequência de Aminoácidos , Animais , Apoferritinas/genética , Eucariotos/classificação , Eucariotos/genética , Ferritinas/genética , Humanos , Dados de Sequência Molecular , Oxirredutases , Homologia de Sequência de Aminoácidos
10.
Int J Mol Sci ; 17(1)2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26805813

RESUMO

Iron is required for the survival of most organisms, including bacteria, plants, and humans. Its homeostasis in mammals must be fine-tuned to avoid iron deficiency with a reduced oxygen transport and diminished activity of Fe-dependent enzymes, and also iron excess that may catalyze the formation of highly reactive hydroxyl radicals, oxidative stress, and programmed cell death. The advance in understanding the main players and mechanisms involved in iron regulation significantly improved since the discovery of genes responsible for hemochromatosis, the IRE/IRPs machinery, and the hepcidin-ferroportin axis. This review provides an update on the molecular mechanisms regulating cellular and systemic Fe homeostasis and their roles in pathophysiologic conditions that involve alterations of iron metabolism, and provides novel therapeutic strategies to prevent the deleterious effect of its deficiency/overload.


Assuntos
Envelhecimento/metabolismo , Anemia Ferropriva/genética , Hemocromatose/genética , Homeostase/genética , Sobrecarga de Ferro/genética , Envelhecimento/genética , Anemia Ferropriva/metabolismo , Anemia Ferropriva/patologia , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica , Heme/metabolismo , Hemocromatose/metabolismo , Hemocromatose/patologia , Hepcidinas/genética , Hepcidinas/metabolismo , Humanos , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Elementos de Resposta , Transdução de Sinais
11.
Biochim Biophys Acta ; 1833(5): 1085-95, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23369735

RESUMO

TNFα can promote either cell survival or cell death. The activation of NF-κB plays a central role in cell survival while its inhibition makes TNFα-triggered cytotoxicity possible. Here, we report that the overexpression of a non-degradable mutant of the inhibitor of NF-κB (super-repressor (SR)-IκBα) sensitizes HeLa cells towards TNFα-induced apoptosis, involving caspases activation and cytocrome C release from the mitochondria. Interestingly, we describe that the specific knockdown of Bcl-xL, but not that of Bcl-2, Bcl-w or Mcl-1, renders cells sensitive to TNFα-induced apoptosis. This cytotoxic effect occurs without altering the activation of NF-κB. Then, the activation of the NF-κB pathway is not sufficient to protect Bcl-xL-downregulated cells from TNFα-induced cell death, meaning that TNFα is not able to promote cell survival in the absence of Bcl-xL. In addition, Bcl-xL silencing does not potentiate the cytotoxicity afforded by the cytokine in SR-IκBα-overexpressing cells. This indicates that TNFα-induced apoptosis in SR-IκBα-overexpressing cells relies on the protein levels of Bcl-xL. We have corroborated these findings using RD and DU-145 cells, which also become sensitive to TNFα-induced apoptosis after Bcl-xL knockdown despite that NF-κB remains activated. Altogether, our results point out that the impairment of the anti-apoptotic function of Bcl-xL should make cells sensitive towards external insults circumventing the TNFα-triggered NF-κB-mediated cytoprotective effect. Hence, the specific inhibition of Bcl-xL could be envisaged as a promising alternative strategy against NF-κB-dependent highly chemoresistant proliferative malignancies.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Fator de Necrose Tumoral alfa/metabolismo , Proteína bcl-X , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Células HeLa , Humanos , Proteínas I-kappa B/farmacologia , Mitocôndrias , Proteína de Sequência 1 de Leucemia de Células Mieloides , Inibidor de NF-kappaB alfa , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
12.
Annu Rev Pharmacol Toxicol ; 50: 323-54, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20055707

RESUMO

Heme oxygenases (HO) catabolize free heme, that is, iron (Fe) protoporphyrin (IX), into equimolar amounts of Fe(2+), carbon monoxide (CO), and biliverdin. The stress-responsive HO-1 isoenzyme affords protection against programmed cell death. The mechanism underlying this cytoprotective effect relies on the ability of HO-1 to catabolize free heme and prevent it from sensitizing cells to undergo programmed cell death. This cytoprotective effect inhibits the pathogenesis of a variety of immune-mediated inflammatory diseases.


Assuntos
Citoproteção , Heme Oxigenase-1/fisiologia , Animais , Apoptose/efeitos dos fármacos , Biliverdina/fisiologia , Monóxido de Carbono/fisiologia , Regulação Enzimológica da Expressão Gênica , Heme/metabolismo , Heme/toxicidade , Heme Oxigenase-1/genética , Humanos , Inflamação/prevenção & controle , Fator de Necrose Tumoral alfa/farmacologia
13.
Microorganisms ; 11(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37110302

RESUMO

Sub-chronic inflammation, caused by age-related dysbiosis, primes the brain to neuroinflammation and neurodegenerative diseases. Evidence revealed that Parkinson's disease (PD) might originate in the gut, demonstrating gastro-intestinal disturbances, as reported by PD patients long before developing motor symptoms. In this study, we conducted comparative analyses in relatively young and old mice maintained in conventional or gnotobiotic conditions. We aimed to confirm that the effects induced by age-related dysbiosis, rather than aging itself, sensitize to PD onset. This hypothesis was confirmed in germ-free (GF) mice, which proved resistant to the pharmacological induction of PD, regardless of their age. Contrary to conventional animals, old GF mice did not develop an inflammatory phenotype or an accumulation of iron in the brain, two catalysts sensitizing to disease onset. The resistance of GF mice to PD is reverted when colonized with stool collected from conventional old animals, but not if receiving bacterial content from young mice. Hence, changes in gut microbiota composition are a risk factor for PD development and can be targeted preventively by iron chelators, shown to protect the brain from pro-inflammatory intestinal priming that sensitizes to neuroinflammation and the development of severe PD.

14.
Proc Natl Acad Sci U S A ; 106(37): 15837-42, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19706490

RESUMO

Infection by Plasmodium, the causative agent of malaria, is associated with hemolysis and therefore with release of hemoglobin from RBC. Under inflammatory conditions, cell-free hemoglobin can be oxidized, releasing its heme prosthetic groups and producing deleterious free heme. Here we demonstrate that survival of a Plasmodium-infected host relies strictly on its ability to prevent the cytotoxic effects of free heme via the expression of the heme-catabolyzing enzyme heme oxygenase-1 (HO-1; encoded by the Hmox1 gene). When infected with Plasmodium chabaudi chabaudi (Pcc), wild-type (Hmox1(+/+)) BALB/c mice resolved infection and restored homeostasis thereafter (0% lethality). In contrast, HO-1 deficient (Hmox1(-/-)) BALB/c mice developed a lethal form of hepatic failure (100% lethality), similar to the one occurring in Pcc-infected DBA/2 mice (75% lethality). Expression of HO-1 suppresses the pro-oxidant effects of free heme, preventing it from sensitizing hepatocytes to undergo TNF-mediated programmed cell death by apoptosis. This cytoprotective effect, which inhibits the development of hepatic failure in Pcc-infected mice without interfering with pathogen burden, is mimicked by pharmacological antioxidants such as N-acetylcysteine (NAC). When administered therapeutically, i.e., after Pcc infection, NAC suppressed the development of hepatic failure in Pcc-infected DBA/2 mice (0% lethality), without interfering with pathogen burden. In conclusion, we describe a mechanism of host defense against Plasmodium infection, based on tissue cytoprotection against free heme and limiting disease severity irrespectively of parasite burden.


Assuntos
Heme Oxigenase-1/metabolismo , Malária/enzimologia , Malária/prevenção & controle , Plasmodium chabaudi/patogenicidade , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Expressão Gênica , Heme/metabolismo , Heme Oxigenase-1/deficiência , Heme Oxigenase-1/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Falência Hepática/patologia , Falência Hepática/prevenção & controle , Malária/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos SCID , Estresse Oxidativo , Plasmodium chabaudi/fisiologia , Quimeras de Transplante , Fator de Necrose Tumoral alfa/farmacologia
15.
Elife ; 112022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476511

RESUMO

Anthracyclines are among the most used and effective anticancer drugs. Their activity has been attributed to DNA double-strand breaks resulting from topoisomerase II poisoning and to eviction of histones from select sites in the genome. Here, we show that the extensively used anthracyclines Doxorubicin, Daunorubicin, and Epirubicin decrease the transcription of nuclear factor kappa B (NF-κB)-dependent gene targets, but not interferon-responsive genes in primary mouse (Mus musculus) macrophages. Using an NMR-based structural approach, we demonstrate that anthracyclines disturb the complexes formed between the NF-κB subunit RelA and its DNA-binding sites. The anthracycline variants Aclarubicin, Doxorubicinone, and the newly developed Dimethyl-doxorubicin, which share anticancer properties with the other anthracyclines but do not induce DNA damage, also suppressed inflammation, thus uncoupling DNA damage from the effects on inflammation. These findings have implications for anticancer therapy and for the development of novel anti-inflammatory drugs with limited side effects for life-threatening conditions such as sepsis.


Assuntos
Antraciclinas , NF-kappa B , Animais , Camundongos , Antraciclinas/farmacologia , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Dano ao DNA , DNA
16.
J Neurosci ; 30(17): 6094-105, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20427667

RESUMO

FLICE-inhibitory protein (FLIP) is an endogenous inhibitor of the signaling pathway triggered by the activation of death receptors. Here, we reveal a novel biological function for the long form of FLIP (FLIP-L) in neuronal differentiation, which can be dissociated from its antiapoptotic role. We show that FLIP-L is expressed in different regions of the mouse embryonic nervous system. Immunohistochemistry of mouse brain sections at different stages reveals that, in neurons, FLIP is expressed early during the embryonic neuronal development (embryonic day 16) and decreases at later stages (postnatal days 5-15), when its expression is essentially detected in glial cells. FLIP-L overexpression significantly enhances neurotrophin-induced neurite outgrowth in motoneurons, superior cervical ganglion neurons, and PC12 cells. Conversely, the downregulation of FLIP-L protein levels by specific RNA interference significantly reduces neurite outgrowth, even in the presence of the appropriate neurotrophin stimulus. Moreover, NGF-dependent activation of two main intracellular pathways involved in the regulation of neurite outgrowth, extracellular signal-regulated kinases (ERKs) and nuclear factor kappaB (NF-kappaB), is impaired when endogenous FLIP-L is downregulated, although TrkA remains activated. Finally, we demonstrate that FLIP-L interacts with TrkA, and not with p75(NTR), in an NGF-dependent manner, and endogenous FLIP-L interacts with TrkB in whole-brain lysates from embryonic day 15 mice embryos. Altogether, we uncover a new role for FLIP-L as an unexpected critical player in neurotrophin-induced mitogen-activated protein kinase/ERK- and NF-kappaB-mediated control of neurite growth in developing neurons.


Assuntos
Encéfalo/fisiologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Fatores de Crescimento Neural/metabolismo , Neuritos/fisiologia , Neurogênese/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Morte Celular/fisiologia , Diferenciação Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Neurônios Motores/fisiologia , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso , Neuroglia/metabolismo , Células PC12 , Ratos , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Receptores de Fatores de Crescimento , Receptores de Fator de Crescimento Neural/metabolismo , Gânglio Cervical Superior/embriologia , Gânglio Cervical Superior/crescimento & desenvolvimento , Gânglio Cervical Superior/fisiologia
17.
Antioxid Redox Signal ; 35(6): 453-473, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233941

RESUMO

Significance: There is still no cure for neurodegenerative diseases, such as Parkinson's disease (PD). Current treatments are based on the attempt to reduce dopaminergic neuronal loss, and multidisciplinary approaches have been used to provide only a temporary symptoms' relief. In addition to the difficulties of drugs developed against PD to access the brain, the specificity of those inhibitory compounds could be a concern. This because neurons might degenerate by activating distinct signaling pathways, which are often initiated by the same stimulus. Recent Advances: Apoptosis, necroptosis, and ferroptosis were shown to significantly contribute to PD progression and, so far, are the main death programs described as capable to alter brain homeostasis. Their activation is characterized by different biochemical and morphological features, some of which might even share the same molecular players. Critical Issues: If there is a pathological need to engage, in PD, multiple death programs, sequentially or simultaneously, is not clear yet. Possibly the activation of apoptosis, necroptosis, and/or ferroptosis correlates to different PD stages and symptom severities. This would imply that the efficacy of therapeutic approaches against neuronal death might depend on the death program they target and the relevance of this death pathway on a specific PD phase. Future Directions: In this review, we describe the molecular mechanisms underlying the activation of apoptosis, necroptosis, and ferroptosis in PD. Understanding the interrelationship between different death pathways' activation in PD is of utmost importance for the development of therapeutic approaches against disease progression. Antioxid. Redox Signal. 35, 453-473.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Ferro/metabolismo , Doença de Parkinson/metabolismo , Animais , Morte Celular , Humanos
18.
J Cell Biol ; 167(3): 479-92, 2004 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-15520226

RESUMO

Fas apoptosis inhibitory molecule (FAIM) is a protein identified as an antagonist of Fas-induced cell death. We show that FAIM overexpression fails to rescue neurons from trophic factor deprivation, but exerts a marked neurite growth-promoting action in different neuronal systems. Whereas FAIM overexpression greatly enhanced neurite outgrowth from PC12 cells and sympathetic neurons grown with nerve growth factor (NGF), reduction of endogenous FAIM levels by RNAi decreased neurite outgrowth in these cells. FAIM overexpression promoted NF-kappa B activation, and blocking this activation by using a super-repressor I kappa B alpha or by carrying out experiments using cortical neurons from mice that lack the p65 NF-kappa B subunit prevented FAIM-induced neurite outgrowth. The effect of FAIM on neurite outgrowth was also blocked by inhibition of the Ras-ERK pathway. Finally, we show that FAIM interacts with both Trk and p75 neurotrophin receptor NGF receptors in a ligand-dependent manner. These results reveal a new function of FAIM in promoting neurite outgrowth by a mechanism involving activation of the Ras-ERK pathway and NF-kappa B.


Assuntos
Sistema de Sinalização das MAP Quinases , NF-kappa B/fisiologia , Neuritos/metabolismo , Proteínas/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Humanos , Camundongos , NF-kappa B/metabolismo , Neurônios/citologia , Proteínas Oncogênicas/metabolismo , Células PC12 , Proteínas/genética , Proteínas/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Receptor de Fator de Crescimento Neural , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais , Transfecção
19.
Pharmaceuticals (Basel) ; 12(4)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817314

RESUMO

Iron is essential for almost all organisms, being involved in oxygen transport, DNA synthesis, and respiration; however, it is also potentially toxic via the formation of free radicals [...].

20.
Pharmaceuticals (Basel) ; 12(3)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470556

RESUMO

Iron is a critical element for most organisms, which plays a fundamental role in the great majority of physiological processes. So much so, that disruption of iron homeostasis has severe multi-organ impacts with the brain being particularly sensitive to such modifications. More specifically, disruption of iron homeostasis in the brain can affect neurophysiological mechanisms, cognition, and social behavior, which eventually contributes to the development of a diverse set of neuro-pathologies. This article starts by exploring the mechanisms of iron action in the brain and follows with a discussion on cognitive and behavioral implications of iron deficiency and overload and how these are framed by the social context. Subsequently, we scrutinize the implications of the disruption of iron homeostasis for the onset and progression of psychosocial disorders. Lastly, we discuss the links between biological, psychological, and social dimensions and outline potential avenues of research. The study of these interactions could ultimately contribute to a broader understanding of how individuals think and act under physiological and pathophysiological conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA