Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Phys Rev Lett ; 125(6): 065503, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32845696

RESUMO

Glycerol pressurized to 2 kbar and hyperquenched from the bulk liquid at rates of about -10 000 K/s, has been frozen to an extreme out-of-equilibrium state. As compared to conventionally cooled melts, the resulting material exhibits lower orientational correlations, enabling the observation of a secondary relaxation peak in the ambient-pressure dielectric response. The hyperquenching rather than the pressurizing part of the preparation protocol induces the observed structural changes. These vanish entirely only well above the glass transition temperature of the equilibrium liquid and are evidence for strong similarities between hyperquenched and vapor-deposited glass formers.

2.
Biophys J ; 110(4): 840-9, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26541066

RESUMO

Complex living systems such as mammalian cells can be arrested in a solid phase by ultrarapid cooling. This allows for precise observation of cellular structures as well as cryopreservation of cells. The state of water, the main constituent of biological samples, is crucial for the success of cryogenic applications. Water exhibits many different solid states. If it is cooled extremely rapidly, liquid water turns into amorphous ice, also called vitreous water, a glassy and amorphous solid. For cryo-preservation, the vitrification of cells is believed to be mandatory for cell survival after freezing. Intracellular ice crystallization is assumed to be lethal, but experimental data on the state of water during cryopreservation are lacking. To better understand the water conditions in cells subjected to freezing protocols, we chose to directly analyze their subcellular water states by cryo-electron microscopy and tomography, cryoelectron diffraction, and x-ray diffraction both in the cryofixed state and after warming to different temperatures. By correlating the survival rates of cells with their respective water states during cryopreservation, we found that survival is less dependent on ice-crystal formation than expected. Using high-resolution cryo-imaging, we were able to directly show that cells tolerate crystallization of extra- and intracellular water. However, if warming is too slow, many small ice crystals will recrystallize into fewer but bigger crystals, which is lethal. The applied cryoprotective agents determine which crystal size is tolerable. This suggests that cryoprotectants can act by inhibiting crystallization or recrystallization, but they also increase the tolerance toward ice-crystal growth.


Assuntos
Criopreservação/métodos , Gelo , Sobrevivência Celular , Microscopia Crioeletrônica , Cristalização , Células HeLa , Humanos , Difração de Raios X
3.
J Struct Biol ; 191(2): 156-64, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26094877

RESUMO

Bacterial spores of the genera Bacillus and Clostridium are extremely resistant against desiccation, heat and radiation and involved in the spread and pathogenicity of health relevant species such as Bacillus anthracis (anthrax) or Clostridium botulinum. While the resistance of spores is very well documented, underlying mechanisms are not fully understood. In this study we show, by cryo-electron microscopy of vitreous sections and particular resin thin section electron microscopy, that dormant Bacillus spores possess highly ordered crystalline core structures, which contain the DNA, but only if small acid soluble proteins (SASPs) are present. We found those core structures in spores of all Bacillus species investigated, including spores of anthrax. Similar core structures were detected in Geobacillus and Clostridium species which suggest that highly ordered, at least partially crystalline core regions represent a general feature of bacterial endospores. The crystalline core structures disintegrate in a period during spore germination, when resistance against most stresses is lost. Our results suggest that the DNA is tightly packed into a crystalline nucleoid by binding SASPs, which stabilizes DNA fibrils and protects them against modification. Thus, the crystalline nucleoid seems to be the structural and functional correlate for the remarkable stability of the DNA in bacterial endospores.


Assuntos
Bacillus/fisiologia , DNA Bacteriano/química , Esporos Bacterianos/química , Estresse Fisiológico , Fenômenos Fisiológicos Bacterianos , Microscopia Crioeletrônica , Dessecação , Esporos Bacterianos/ultraestrutura
4.
J Struct Biol ; 184(2): 355-60, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24121039

RESUMO

Volume microscopy at high resolution is increasingly required to better understand cellular functions in the context of three-dimensional assemblies. Focused ion beam (FIB) milling for serial block face imaging in the scanning electron microscope (SEM) is an efficient and fast method to generate such volume data for 3D analysis. Here, we apply this technique at cryo-conditions to image fully hydrated frozen specimen of mouse optic nerves and Bacillus subtilis spores obtained by high-pressure freezing (HPF). We established imaging conditions to directly visualize the ultrastructure in the block face at -150 °C by using an in-lens secondary electron (SE) detector. By serial sectioning with a focused ion beam and block face imaging of the optic nerve we obtained a volume as large as X=7.72 µm, Y=5.79 µm and Z=3.81 µm with a lateral pixel size of 7.5 nm and a slice thickness of 30 nm in Z. The intrinsic contrast of membranes was sufficient to distinguish structures like Golgi cisternae, vesicles, endoplasmic reticulum and cristae within mitochondria and allowed for a three-dimensional reconstruction of different types of mitochondria within an oligodendrocyte and an astrocytic process. Applying this technique to dormant B. subtilis spores we obtained volumes containing numerous spores and discovered a bright signal in the core, which cannot be related to any known structure so far. In summary, we describe the use of cryo FIB-SEM as a tool for direct and fast 3D cryo-imaging of large native frozen samples including tissues.


Assuntos
Microscopia Crioeletrônica , Nervo Óptico/ultraestrutura , Animais , Bacillus subtilis/ultraestrutura , Secções Congeladas , Imageamento Tridimensional , Camundongos , Microscopia Eletrônica de Varredura , Esporos Bacterianos/ultraestrutura
5.
Chembiochem ; 14(18): 2492-9, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24151156

RESUMO

Growing resistance to antibiotics, as well as newly emerging pathogens, stimulate the investigation of antimicrobial peptides (AMPs) as therapeutic agents. Here, we report a new library design concept based on a stochastic distribution of natural AMP amino acid sequences onto half-length synthetic peptides. For these compounds, a non-natural motif of alternating D- and L-backbone stereochemistry of the peptide chain predisposed for ß-helix formation was explored. Synthetic D-/L-peptides with permuted half-length sequences were delineated from a full-length starter sequence and covalently recombined to create two-dimensional compound arrays for antibacterial screening. Using the natural AMP magainin as a seed sequence, we identified and iteratively optimized hit compounds showing high antimicrobial activity against Gram-positive and Gram-negative bacteria with low hemolytic activity. Cryo-electron microscopy characterized the membrane-associated mechanism of action of the new D-/L-peptide antibiotics.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Humanos , Dados de Sequência Molecular , Biblioteca de Peptídeos , Técnicas de Síntese em Fase Sólida , Processos Estocásticos
6.
Histochem Cell Biol ; 140(4): 369-81, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23954988

RESUMO

In 1898, the Golgi apparatus was discovered by light microscopy, and since the 1950s, the ultrastructure composition is known by electron microscopic investigation. The complex three-dimensional morphology fascinated researchers and was sometimes even the driving force to develop novel visualization techniques. However, the highly dynamic membrane systems of Golgi apparatus are delicate and prone to fixation artifacts. Therefore, the understanding of Golgi morphology and its function has been improved significantly with the development of better preparation methods. Nowadays, cryo-fixation is the method of choice to arrest instantly all dynamic and physiological processes inside cells, tissues, and small organisms. Embedded in amorphous ice, such samples can be further processed by freeze substitution or directly analyzed in their fully hydrated state by cryo-electron microscopy and tomography. Even though the overall morphology of vitrified Golgi stacks is comparable to well-prepared and resin-embedded samples, previously unknown structural details can be observed solely based on their native density. At this point, any further improvement of sample preparation would gain novel insights, perhaps not in terms of general morphology, but on fine structural details of this dynamic organelle.


Assuntos
Microscopia Crioeletrônica , Complexo de Golgi/ultraestrutura , Animais , Complexo de Golgi/metabolismo , Humanos
7.
J Struct Biol ; 178(2): 84-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22508105

RESUMO

Cryo-electron microscopy of vitreous sections (CEMOVIS) is currently considered the method of choice to explore cellular ultrastructure at high resolution as close as possible to their native state. Here, we apply a novel, easy-to-use and low-cost freeze fixation method for CEMOVIS, avoiding the use of high-pressure freezing apparatus. Cells are placed in capillary metal tubes, which are tightly closed and plunged directly into liquid ethane cooled by liquid nitrogen. In some parts of the tube, crystalline ice is formed, building up pressure sufficient for the liquid-glass transition of the remaining specimen. We verified the presence of vitreous ice in these preparations using CEMOVIS and electron diffraction. Furthermore, different tube materials being less poisonous than copper were established to minimize physiological alterations of the specimen. Bacteria, yeast and mammalian cells were tested for molecular resolution. The quality of results is equivalent to samples prepared by conventional high pressure freezing apparatus, thus establishing this novel method as fast, easy-to-use and low-cost freeze fixation alternative for cryo-EM.


Assuntos
Microscopia Crioeletrônica/métodos , Criopreservação/métodos , Pressão
8.
PLoS Biol ; 7(10): e1000215, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19823572

RESUMO

Release of cell surface-bound ligands by A-Disintegrin-And-Metalloprotease (ADAM) transmembrane metalloproteases is essential for signalling by cytokine, cell adhesion, and tyrosine kinase receptors. For Eph receptor ligands, it provides the switch between cell-cell adhesion and repulsion. Ligand shedding is tightly controlled by intrinsic tyrosine kinase activity, which for Eph receptors relies on the release of an inhibitory interaction of the cytoplasmic juxtamembrane segment with the kinase domain. However, a mechanism linking kinase and sheddase activities had remained elusive. We demonstrate that it is a membrane-proximal localisation of the latent kinase domain that prevents ephrin ligand shedding in trans. Fluorescence lifetime imaging microscopy and electron tomography reveal that activation extends the Eph receptor tyrosine kinase intracellular domain away from the cell membrane into a conformation that facilitates productive association with ADAM10. Accordingly, EphA3 mutants with constitutively-released kinase domains efficiently support shedding, even when their kinase is disabled. Our data suggest that this phosphorylation-activated conformational switch of EphA3 directly controls ADAM-mediated shedding.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Efrinas/metabolismo , Proteínas de Membrana/metabolismo , Proteína ADAM10 , Calmodulina/metabolismo , Linhagem Celular , Efrina-A3/genética , Efrina-A3/metabolismo , Efrinas/genética , Humanos , Selectina L/metabolismo , Pontos Quânticos , Receptores da Família Eph/genética
9.
J Proteome Res ; 9(10): 4927-39, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20707389

RESUMO

Zymogen granules (ZG) are specialized storage organelles in the exocrine pancreas that allow the sorting, packaging, and regulated apical secretion of digestive enzymes. As there is a critical need for further understanding of the key processes in regulated secretion to develop new therapeutic options in medicine, we applied a suborganellar proteomics approach to identify peripheral membrane-associated ZG proteins. We focused on the analysis of a "basic" group (pH range 6.2-11) with about 46 spots among which 44 were identified by tandem mass spectrometry. These spots corresponded to 16 unique proteins, including rat mast cell chymase (RMCP-1) and peptidyl-prolyl cis-trans isomerase B (PpiB; cyclophilin B), an ER-resident protein. To confirm that these proteins were specific to zymogen granules and not contaminants of the preparation, we conducted a series of validation experiments. Immunoblotting of ZG subfractions revealed that chymase and PpiB behaved like bona fide peripheral membrane proteins. Their expression in rat pancreas was regulated by feeding behavior. Ultrastructural and immunofluorescence studies confirmed their ZG localization. Furthermore, a chymase-YFP fusion protein was properly targeted to ZG in pancreatic AR42J cells. Interestingly, for both proteins, proteoglycan-binding properties have been reported. The importance of our findings for sorting and packaging during ZG formation is discussed.


Assuntos
Proteínas de Membrana/metabolismo , Pâncreas Exócrino/metabolismo , Proteômica/métodos , Vesículas Secretórias/metabolismo , Animais , Linhagem Celular Tumoral , Quimases/genética , Quimases/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Eletroforese em Gel Bidimensional , Expressão Gênica , Concentração de Íons de Hidrogênio , Immunoblotting , Proteínas de Membrana/genética , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Pâncreas Exócrino/ultraestrutura , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem
10.
Curr Protoc Cell Biol ; 79(1): e47, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29924483

RESUMO

Reduction or complete prevention of ice crystal formation during freezing of biological specimens is mandatory for two important biological applications: (1) cryopreservation of living cells or tissues for long-term storage, and (2) cryo-fixation for ultrastructural investigations by electron microscopy. Here, a protocol that is fast, easy-to-use, and suitable for both cryo-fixation and cryopreservation is described. Samples are rapidly cooled in tightly sealed metal tubes of high thermal diffusivity and then plunged into a liquid cryogen. Due to the fast cooling speed and high-pressure buildup internally in the confined volume of the metal tubes, ice crystal formation is reduced or completely prevented, resulting in vitrification of the sample. For cryopreservation, however, a similar principle applies to prevent ice crystal formation during re-warming. A detailed description of procedures for cooling (and re-warming) of biological samples using this technique is provided. © 2018 by John Wiley & Sons, Inc.


Assuntos
Microscopia Crioeletrônica/métodos , Criopreservação/métodos , Congelamento , Pressão , Fixação de Tecidos/métodos , Animais , Linhagem Celular , Sobrevivência Celular , Humanos
11.
PLoS One ; 11(10): e0164270, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27711254

RESUMO

Rapid cooling of aqueous solutions is a useful approach for two important biological applications: (I) cryopreservation of cells and tissues for long-term storage, and (II) cryofixation for ultrastructural investigations by electron and cryo-electron microscopy. Usually, both approaches are very different in methodology. Here we show that a novel, fast and easy to use cryofixation technique called self-pressurized rapid freezing (SPRF) is-after some adaptations-also a useful and versatile technique for cryopreservation. Sealed metal tubes with high thermal diffusivity containing the samples are plunged into liquid cryogen. Internal pressure builds up reducing ice crystal formation and therefore supporting reversible cryopreservation through vitrification of cells. After rapid rewarming of pressurized samples, viability rates of > 90% can be reached, comparable to best-performing of the established rapid cooling devices tested. In addition, the small SPRF tubes allow for space-saving sample storage and the sealed containers prevent contamination from or into the cryogen during freezing, storage, or thawing.


Assuntos
Criopreservação/métodos , Animais , Células COS , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Microscopia Crioeletrônica , Criopreservação/instrumentação , Crioprotetores/química , Crioprotetores/farmacologia , Congelamento , Células HeLa , Humanos , Pressão , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/ultraestrutura , Vitrificação/efeitos dos fármacos
13.
J Neurosci ; 23(30): 9732-41, 2003 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-14586000

RESUMO

Functional peroxisome deficiency, as encountered in Zellweger syndrome, causes a specific impairment of neuronal migration. Although the molecular mechanisms underlying the neuronal migration defect are at present unknown, the excess of very long chain fatty acids in brain, a consequence of peroxisomalbeta-oxidation deficiency, has often been hypothesized to play a major role. The purpose of the present study was to investigate the contribution of peroxisomal dysfunction in brain as opposed to peroxisomal dysfunction in extraneuronal tissues to the migration defect. Peroxisomes were selectively reconstituted either in brain or liver of Pex5 knock-out mice, a model for Zellweger syndrome, by tissue-selective overexpression of Pex5p. We found that both rescue strains exhibited a significant correction of the neuronal migration defect despite an incomplete reconstitution of peroxisomal function in the targeted tissue. Animals with a simultaneous rescue of peroxisomes in both tissues displayed a pattern of neuronal migration indistinguishable from that of wild-type animals on the basis of cresyl violet staining and 5',3'-bromo-2'-deoxyuridine birth-dating analysis. These data suggest that peroxisomal metabolism in brain but also in extraneuronal tissues affects the normal development of the mouse neocortex. In liver-rescued mice, the improvement of the neuronal migration was not accompanied by changes in very long chain fatty acid, docosahexaenoic acid, or plasmalogen levels in brain, indicating that other metabolic factors can influence the neuronal migration process.


Assuntos
Encéfalo/metabolismo , Movimento Celular/fisiologia , Proteínas do Tecido Nervoso , Neurônios/fisiologia , Peroxissomos/fisiologia , Receptores Citoplasmáticos e Nucleares/deficiência , Animais , Bromodesoxiuridina , Movimento Celular/genética , Expressão Gênica , Proteínas de Filamentos Intermediários/genética , Fígado/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Nestina , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos/genética , Receptor 1 de Sinal de Orientação para Peroxissomos , Peroxissomos/genética , Peroxissomos/metabolismo , Fenótipo , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores Citoplasmáticos e Nucleares/genética
14.
PLoS One ; 10(10): e0139429, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26431424

RESUMO

The canonical protein tyrosine phosphatase PTP1B is an important regulator of diverse cellular signaling networks. PTP1B has long been thought to exert its influence solely from its perch on the endoplasmic reticulum (ER); however, an additional subpopulation of PTP1B has recently been detected in mitochondria extracted from rat brain tissue. Here, we show that PTP1B's mitochondrial localization is general (observed across diverse mammalian cell lines) and sensitively dependent on the transmembrane domain length, C-terminal charge and hydropathy of its short (≤35 amino acid) tail anchor. Our electron microscopy of specific DAB precipitation revealed that PTP1B localizes via its tail anchor to the outer mitochondrial membrane (OMM), with fluorescence lifetime imaging microscopy establishing that this OMM pool contributes to the previously reported cytoplasmic interaction of PTP1B with endocytosed epidermal growth factor receptor. We additionally examined the mechanism of PTP1B's insertion into the ER membrane through heterologous expression of PTP1B's tail anchor in wild-type yeast and yeast mutants of major conserved ER insertion pathways: In none of these yeast strains was ER targeting significantly impeded, providing in vivo support for the hypothesis of spontaneous membrane insertion (as previously demonstrated in vitro). Further functional elucidation of the newly recognized mitochondrial pool of PTP1B will likely be important for understanding its complex roles in cellular responses to external stimuli, cell proliferation and diseased states.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Endocitose/fisiologia , Receptores ErbB/metabolismo , Membranas Mitocondriais/metabolismo , Estrutura Terciária de Proteína/fisiologia , Transdução de Sinais/fisiologia
15.
Microsc Res Tech ; 61(2): 121-38, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12740819

RESUMO

In the era of application of molecular biological gene-targeting technology for the generation of knockout mouse models to study human genetic diseases, the availability of highly sensitive and reliable methods for the morphological characterization of the specific phenotypes of these mice is of great importance. In the first part of this report, the role of morphological techniques for studying the biology and pathology of peroxisomes is reviewed, and the techniques established in our laboratories for the localization of peroxisomal proteins and corresponding mRNAs in fetal and newborn mice are presented and discussed in the context of the international literature. In the second part, the literature on the ontogenetic development of the peroxisomal compartment in mice, with special emphasis on liver and intestine is reviewed and compared with our own data reported recently. In addition, some recent data on the pathological alterations in the liver of the PEX5(-/-) mouse with a peroxisomal biogenesis defect are briefly discussed. Finally, the methods developed during these studies for the localization of mitochondrial proteins (respiratory chain complexes and MnSOD) are presented and their advantages and pitfalls discussed. With the help of these techniques, it is now possible to identify and distinguish unequivocally peroxisomes from mitochondria, two classes of cell organelles giving by light microscopy a punctate staining pattern in microscopical immunohistochemical preparations of paraffin-embedded mouse tissues.


Assuntos
Intestinos/crescimento & desenvolvimento , Fígado/crescimento & desenvolvimento , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Síndrome de Zellweger/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Hibridização In Situ , Mucosa Intestinal/metabolismo , Intestinos/citologia , Intestinos/ultraestrutura , Fígado/citologia , Fígado/metabolismo , Fígado/ultraestrutura , Camundongos , Camundongos Knockout , Mitocôndrias/ultraestrutura , Receptor 1 de Sinal de Orientação para Peroxissomos , Peroxissomos/ultraestrutura , RNA Mensageiro/metabolismo , RNA Mensageiro/ultraestrutura , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Síndrome de Zellweger/patologia
16.
Acta Histochem ; 106(1): 11-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15032324

RESUMO

During the last decade, peroxisome proliferation has emerged as a novel biomarker of exposure to certain organic chemical pollutants in aquatic organisms. Peroxisome proliferation is mediated by nuclear receptors, peroxisome proliferator-activated receptors (PPARs). Three PPAR subtypes have been described in mammals: PPAR alpha, PPAR beta and PPAR gamma. PPARs have also been discovered in several fish species. The aim of the present study was to investigate the expression of PPAR subtypes and their cellular distribution patterns in the liver of gray mullet Mugil cephalus, a fish species widely distributed in estuaries and coastal areas in Europe and used as sentinel of environmental pollution. For this purpose, antibodies were generated against the three subtypes of mouse PPARs and different protocols of antigen retrieval were used. In western blots, main bands were detected of approximately 44 kDa for PPAR alpha, two bands of 44 and 58 kDa for PPAR beta and a single band of 56 kDa for PPAR gamma. Similar results were obtained in mouse liver and may indicate antibody recognition of two forms of the protein in certain cases. PPAR alpha was the subtype most markedly expressed in gray mullet liver, being expressed mainly in melanomacrophages, nuclei of hepatocytes and sinusoidal cells and connective tissue surrounding bile ducts. PPAR beta was expressed in the same cell types but immunolabeling was generally weaker than for PPAR alpha. PPAR gamma showed very weak expression; positivity was mainly found in melanomacrophages and connective tissue surrounding bile ducts. Our results demonstrate that all the three PPAR subtypes are expressed in gray mullet liver but in different intensities. The cellular distribution patterns of PPAR subtypes in gray mullet liver resembled partly those found in mouse liver with PPAR alpha as the main subtype expressed in hepatocytes. The fact that melanomacrophages, cells of the immune system in fish, show strong expression of both PPAR alpha and PPAR beta whereas PPAR gamma expression is almost restricted to this cell type suggest a significant role of PPAR-mediated regulation of cell function in melanomacrophages.


Assuntos
Fígado/química , Receptores Citoplasmáticos e Nucleares/análise , Smegmamorpha/metabolismo , Fatores de Transcrição/análise , Animais , Ductos Biliares/química , Western Blotting , Eletroforese em Gel de Poliacrilamida , Células Endoteliais/química , Hepatócitos/química , Imuno-Histoquímica , Fígado/citologia , Macrófagos/química , Camundongos , Camundongos Endogâmicos BALB C
17.
Methods Mol Biol ; 1117: 173-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24357364

RESUMO

High-pressure freeze fixation is the method of choice to arrest instantly all dynamic and physiological processes inside cells, tissues, and small organisms. Embedded in vitreous ice, such samples can be further processed by freeze substitution or directly analyzed in their fully hydrated state by cryo-electron microscopy of vitreous sections (CEMOVIS) to explore cellular ultrastructure as close as possible to the native state. Here, we describe the procedure of self-pressurized rapid freezing as fast, easy-to-use, and low-cost freeze fixation method, avoiding the usage of a high-pressure freezing (HPF) apparatus. Cells or small organisms are placed in capillary metal tubes, which are tightly closed and plunged directly into liquid ethane cooled by liquid nitrogen. In parts of the tube, crystalline ice is formed and builds up pressure sufficient for the liquid-glass transition of the remaining specimen. The quality of samples is equivalent to preparations by conventional HPF apparatus, allowing for high-resolution cryo-EM applications or for freeze substitution and plastic embedding.


Assuntos
Microscopia Crioeletrônica/métodos , Criopreservação/métodos , Pressão , Substituição ao Congelamento/métodos
18.
Methods Cell Biol ; 111: 117-38, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22857926

RESUMO

The correlation of light and electron microscopy (EM) is a powerful tool as it combines the investigation of dynamic processes in vivo with the resolution power of the electron microscope. The green fluorescent proteins (GFPs) and its derivatives revolutionized live-cell light microscopy. Hence, this review outlines correlative microscopy of GFP through photo-oxidation, a method that allows for the direct ultrastructural visualization of fluorophores upon illumination. Oxygen radicals generated during the GFP bleaching process photo-oxidize diaminobenzidine (DAB) into an electron dense precipitate that can be visualized both by routine EM of thin sections and by electron tomography for 3D analysis. There are different levels of correlative microscopy, i.e. the correlation of certain areas, cells, or organelles from light to EM, where photo-oxidation of DAB through GFP allows the highest possible degree--the correlation of specific molecules.


Assuntos
Tomografia com Microscopia Eletrônica , Proteínas de Fluorescência Verde/biossíntese , Animais , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Células HeLa , Humanos , Imageamento Tridimensional , Microscopia de Fluorescência , Oxirredução
19.
PLoS One ; 7(5): e36633, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22655028

RESUMO

Protein-tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed PTP that is anchored to the endoplasmic reticulum (ER). PTP1B dephosphorylates activated receptor tyrosine kinases after endocytosis, as they transit past the ER. However, PTP1B also can access some plasma membrane (PM)-bound substrates at points of cell-cell contact. To explore how PTP1B interacts with such substrates, we utilized quantitative cellular imaging approaches and mathematical modeling of protein mobility. We find that the ER network comes in close proximity to the PM at apparently specialized regions of cell-cell contact, enabling PTP1B to engage substrate(s) at these sites. Studies using PTP1B mutants show that the ER anchor plays an important role in restricting its interactions with PM substrates mainly to regions of cell-cell contact. In addition, treatment with PTP1B inhibitor leads to increased tyrosine phosphorylation of EphA2, a PTP1B substrate, specifically at regions of cell-cell contact. Collectively, our results identify PM-proximal sub-regions of the ER as important sites of cellular signaling regulation by PTP1B.


Assuntos
Retículo Endoplasmático/metabolismo , Junções Intercelulares/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Animais , Células COS , Comunicação Celular , Linhagem Celular , Chlorocebus aethiops , Retículo Endoplasmático/ultraestrutura , Humanos , Junções Intercelulares/ultraestrutura , Modelos Biológicos , Mutação , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 1/análise , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Transdução de Sinais
20.
Biol Cell ; 99(1): 45-53, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17049046

RESUMO

BACKGROUND INFORMATION: Over the past decades, cryo-electron microscopy of vitrified specimens has yielded a detailed understanding of the tubulin and microtubule structures of samples reassembled in vitro from purified components. However, our knowledge of microtubule structure in vivo remains limited by the chemical treatments commonly used to observe cellular architecture using electron microscopy. RESULTS: We used cryo-electron microscopy and cryo-electron tomography of vitreous sections to investigate the ultrastructure of microtubules in their cellular context. Vitreous sections were obtained from organotypic slices of rat hippocampus and from Chinese-hamster ovary cells in culture. Microtubules revealed their protofilament ultrastructure, polarity and, in the most favourable cases, molecular details comparable with those visualized in three-dimensional reconstructions of microtubules reassembled in vitro from purified tubulin. The resolution of the tomograms was estimated to be approx. 4 nm, which enabled the detection of luminal particles of approx. 6 nm in diameter inside microtubules. CONCLUSIONS: The present study provides a first step towards a description of microtubules, in addition to other macromolecular assemblies, in an unperturbed cellular context at the molecular level. As the resolution appears to be similar to that obtainable with plunge-frozen samples, it should allow for the in vivo identification of larger macromolecular assemblies in vitreous sections of whole cells and tissues.


Assuntos
Microtúbulos/ultraestrutura , Neurônios/citologia , Neurônios/ultraestrutura , Animais , Células CHO , Polaridade Celular , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Hipocampo/citologia , Hipocampo/ultraestrutura , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA