Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Biol Chem ; 396(5): 511-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25720068

RESUMO

Redox signals have emerged as important regulators of cellular physiology and pathology. The advent of redox imaging in vertebrate systems now provides the opportunity to dynamically visualize redox signaling during development and disease. In this review, we summarize recent advances in the generation of genetically encoded redox indicators (GERIs), introduce new redox imaging strategies, and highlight key publications in the field of vertebrate redox imaging. We also discuss the limitations and future potential of in vivo redox imaging in zebrafish and mice.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas de Fluorescência Verde/genética , Espécies Reativas de Oxigênio/metabolismo , Animais , Camundongos , Oxirredução , Transdução de Sinais , Peixe-Zebra
2.
J Microsc ; 259(2): 105-113, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25611576

RESUMO

For 3D reconstructions of whole immune cells from zebrafish, isolated from adult animals by FAC-sorting we employed array tomography on hundreds of serial sections deposited on silicon wafers. Image stacks were either recorded manually or automatically with the newly released ZEISS Atlas 5 Array Tomography platform on a Zeiss FEGSEM. To characterize different populations of immune cells, organelle inventories were created by segmenting individual cells. In addition, arrays were used for quantification of cell populations with respect to the various cell types they contained. The detection of immunological synapses in cocultures of cell populations from thymus or WKM with cancer cells helped to identify the cytotoxic nature of these cells. Our results demonstrate the practicality and benefit of AT for high-throughput ultrastructural imaging of substantial volumes.


Assuntos
Imageamento Tridimensional/métodos , Sistema Imunitário/citologia , Sistema Imunitário/ultraestrutura , Linfócitos/ultraestrutura , Tomografia/métodos , Adulto , Animais , Linhagem Celular Tumoral , Movimento Celular , Separação Celular , Células Cultivadas , Citometria de Fluxo/métodos , Humanos , Sinapses Imunológicas/ultraestrutura , Timo/citologia , Timo/ultraestrutura , Peixe-Zebra
3.
Nature ; 459(7249): 996-9, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19494811

RESUMO

Barrier structures (for example, epithelia around tissues and plasma membranes around cells) are required for internal homeostasis and protection from pathogens. Wound detection and healing represent a dormant morphogenetic program that can be rapidly executed to restore barrier integrity and tissue homeostasis. In animals, initial steps include recruitment of leukocytes to the site of injury across distances of hundreds of micrometres within minutes of wounding. The spatial signals that direct this immediate tissue response are unknown. Owing to their fast diffusion and versatile biological activities, reactive oxygen species, including hydrogen peroxide (H(2)O(2)), are interesting candidates for wound-to-leukocyte signalling. Here we probe the role of H(2)O(2) during the early events of wound responses in zebrafish larvae expressing a genetically encoded H(2)O(2) sensor. This reporter revealed a sustained rise in H(2)O(2) concentration at the wound margin, starting approximately 3 min after wounding and peaking at approximately 20 min, which extended approximately 100-200 microm into the tail-fin epithelium as a decreasing concentration gradient. Using pharmacological and genetic inhibition, we show that this gradient is created by dual oxidase (Duox), and that it is required for rapid recruitment of leukocytes to the wound. This is the first observation, to our knowledge, of a tissue-scale H(2)O(2) pattern, and the first evidence that H(2)O(2) signals to leukocytes in tissues, in addition to its known antiseptic role.


Assuntos
Peróxido de Hidrogênio/metabolismo , Ferimentos e Lesões/metabolismo , Peixe-Zebra/metabolismo , Animais , Difusão , Larva/metabolismo , Leucócitos/citologia , Leucócitos/fisiologia , NADPH Oxidases/metabolismo , Cicatrização/fisiologia , Ferimentos e Lesões/enzimologia , Ferimentos e Lesões/patologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Nat Rev Cancer ; 6(5): 347-59, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16612405

RESUMO

The chromosomal translocation t(7;9) in human T-cell acute lymphoblastic leukaemia (T-ALL) results in deregulated expression of a truncated, activated form of Notch 1 (TAN1) under the control of the T-cell receptor-beta (TCRB) locus. Although TAN1 efficiently induces T-ALL in mouse models, t(7;9) is present in less than 1% of human T-ALL cases. The recent discovery of novel activating mutations in NOTCH1 in more than 50% of human T-ALL samples has made it clear that Notch 1 is far more important in human T-ALL pathogenesis than previously suspected.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia-Linfoma de Células T do Adulto/metabolismo , Receptor Notch1/metabolismo , Humanos , Receptor Notch1/genética , Transdução de Sinais
5.
Fish Shellfish Immunol ; 40(1): 217-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25014315

RESUMO

Neutrophils are the most abundant polymorphonuclear leukocytes, presenting the first line of defence against infection or tissue damage. To characterize the molecular changes on the protein level in neutrophils during sterile inflammation we established the chemically-induced inflammation (ChIn) assay in adult zebrafish and investigated the proteome dynamics within neutrophils of adult zebrafish upon inflammation. Through label-free proteomics we identified 48 proteins that were differentially regulated during inflammation. Gene ontology analysis revealed that these proteins were associated with cell cycle, nitric oxide signalling, regulation of cytoskeleton rearrangement and intermediate filaments as well as immune-related processes such as antigen presentation, leucocyte chemotaxis and IL-6 signalling. Comparison of protein expression dynamics with transcript expression dynamics suggests the existence of regulatory mechanisms confined to the protein level for some genes. This is the first proteome analysis of adult zebrafish neutrophils upon chemically-induced inflammation providing a valuable reference for future studies using zebrafish inflammation models.


Assuntos
Imunidade Inata/efeitos dos fármacos , Proteoma/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Inflamação/induzido quimicamente , Espectrometria de Massas , Neutrófilos/citologia , Neutrófilos/imunologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia
6.
Blood ; 115(16): 3329-40, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20197555

RESUMO

Mutations in the human nucleophosmin (NPM1) gene are the most frequent genetic alteration in adult acute myeloid leukemias (AMLs) and result in aberrant cytoplasmic translocation of this nucleolar phosphoprotein (NPMc+). However, underlying mechanisms leading to leukemogenesis remain unknown. To address this issue, we took advantage of the zebrafish model organism, which expresses 2 genes orthologous to human NPM1, referred to as npm1a and npm1b. Both genes are ubiquitously expressed, and their knockdown produces a reduction in myeloid cell numbers that is specifically rescued by NPM1 expression. In zebrafish, wild-type human NPM1 is nucleolar while NPMc+ is cytoplasmic, as in human AML, and both interact with endogenous zebrafish Npm1a and Npm1b. Forced NPMc+ expression in zebrafish causes an increase in pu.1(+) primitive early myeloid cells. A more marked perturbation of myelopoiesis occurs in p53(m/m) embryos expressing NPMc+, where mpx(+) and csf1r(+) cell numbers are also expanded. Importantly, NPMc+ expression results in increased numbers of definitive hematopoietic cells, including erythromyeloid progenitors in the posterior blood island and c-myb/cd41(+) cells in the ventral wall of the aorta. These results are likely to be relevant to human NPMc+ AML, where the observed NPMc+ multilineage expression pattern implies transformation of a multipotent stem or progenitor cell.


Assuntos
Hematopoese/genética , Leucemia Mieloide Aguda/genética , Células Mieloides/fisiologia , Proteínas Nucleares/genética , Animais , Apoptose/genética , Sequência de Bases , Western Blotting , Separação Celular , Citoplasma/metabolismo , Embrião não Mamífero , Citometria de Fluxo , Imunofluorescência , Células-Tronco Hematopoéticas/fisiologia , Humanos , Imunoprecipitação , Leucemia Mieloide Aguda/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/metabolismo , Nucleofosmina , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Peixe-Zebra
7.
Br J Haematol ; 155(2): 167-81, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21810091

RESUMO

NUP98-HOXA9 [t(7;11) (p15;p15)] is associated with inferior prognosis in de novo and treatment-related acute myeloid leukaemia (AML) and contributes to blast crisis in chronic myeloid leukaemia (CML). We have engineered an inducible transgenic zebrafish harbouring human NUP98-HOXA9 under the zebrafish spi1(pu.1) promoter. NUP98-HOXA9 perturbed zebrafish embryonic haematopoiesis, with upregulated spi1 expression at the expense of gata1a. Markers associated with more differentiated myeloid cells, lcp1, lyz, and mpx were also elevated, but to a lesser extent than spi1, suggesting differentiation of early myeloid progenitors may be impaired by NUP98-HOXA9. Following irradiation, NUP98-HOXA9-expressing embryos showed increased numbers of cells in G2-M transition compared to controls and absence of a normal apoptotic response, which may result from an upregulation of bcl2. These data suggest NUP98-HOXA9-induced oncogenesis may result from a combination of defects in haematopoiesis and an aberrant response to DNA damage. Importantly, 23% of adult NUP98-HOXA9-transgenic fish developed a myeloproliferative neoplasm (MPN) at 19-23 months of age. In summary, we have identified an embryonic haematopoietic phenotype in a transgenic zebrafish line that subsequently develops MPN. This tool provides a unique opportunity for high-throughput in vivo chemical modifier screens to identify novel therapeutic agents in high risk AML.


Assuntos
Transformação Celular Neoplásica/genética , Proteínas de Homeodomínio/genética , Leucemia Experimental/genética , Células Mieloides/patologia , Transtornos Mieloproliferativos/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Animais , Animais Geneticamente Modificados , Apoptose , Ciclo Celular , Linhagem da Célula , Dano ao DNA , Fator de Transcrição GATA1/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Leucêmica da Expressão Gênica , Genes Reporter , Hematopoese/genética , Proteínas de Homeodomínio/fisiologia , Humanos , Leucemia Experimental/patologia , Leucemia Induzida por Radiação/genética , Leucemia Induzida por Radiação/patologia , Células Mieloides/efeitos da radiação , Transtornos Mieloproliferativos/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Proteínas de Fusão Oncogênica/fisiologia , Fenótipo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes de Fusão/fisiologia , Transativadores/genética , Transgenes , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/fisiologia
8.
BMC Biol ; 8: 151, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21176202

RESUMO

BACKGROUND: Studies on innate immunity have benefited from the introduction of zebrafish as a model system. Transgenic fish expressing fluorescent proteins in leukocyte populations allow direct, quantitative visualization of an inflammatory response in vivo. It has been proposed that this animal model can be used for high-throughput screens aimed at the identification of novel immunomodulatory lead compounds. However, current assays require invasive manipulation of fish individually, thus preventing high-content screening. RESULTS: Here we show that specific, noninvasive damage to lateral line neuromast cells can induce a robust acute inflammatory response. Exposure of fish larvae to sublethal concentrations of copper sulfate selectively damages the sensory hair cell population inducing infiltration of leukocytes to neuromasts within 20 minutes. Inflammation can be assayed in real time using transgenic fish expressing fluorescent proteins in leukocytes or by histochemical assays in fixed larvae. We demonstrate the usefulness of this method for chemical and genetic screens to detect the effect of immunomodulatory compounds and mutations affecting the leukocyte response. Moreover, we transformed the assay into a high-throughput screening method by using a customized automated imaging and processing system that quantifies the magnitude of the inflammatory reaction. CONCLUSIONS: This approach allows rapid screening of thousands of compounds or mutagenized zebrafish for effects on inflammation and enables the identification of novel players in the regulation of innate immunity and potential lead compounds toward new immunomodulatory therapies. We have called this method the chemically induced inflammation assay, or ChIn assay. See Commentary article: http://www.biomedcentral.com/1741-7007/8/148.


Assuntos
Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/farmacologia , Inflamação/induzido quimicamente , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Anti-Inflamatórios/farmacologia , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero , Ensaios de Triagem em Larga Escala , Fatores Imunológicos/efeitos adversos , Inflamação/imunologia , Leucócitos/fisiologia , Modelos Biológicos , Infiltração de Neutrófilos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
9.
ACS Nano ; 14(2): 1665-1681, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31922724

RESUMO

Despite the common knowledge that the reticuloendothelial system is largely responsible for blood clearance of systemically administered nanoparticles, the sequestration mechanism remains a "black box". Using transgenic zebrafish embryos with cell type-specific fluorescent reporters and fluorescently labeled model nanoparticles (70 nm SiO2), we here demonstrate simultaneous three-color in vivo imaging of intravenously injected nanoparticles, macrophages, and scavenger endothelial cells (SECs). The trafficking processes were further revealed at ultrastructural resolution by transmission electron microscopy. We also find, using a correlative light-electron microscopy approach, that macrophages rapidly sequester nanoparticles via membrane adhesion and endocytosis (including macropinocytosis) within minutes after injection. In contrast, SECs trap single nanoparticles via scavenger receptor-mediated endocytosis, resulting in gradual sequestration with a time scale of hours. Inhibition of the scavenger receptors prevented SECs from accumulating nanoparticles but enhanced uptake in macrophages, indicating the competitive nature of nanoparticle clearance in vivo. To directly quantify the relative contributions of the two cell types to overall nanoparticle sequestration, the differential sequestration kinetics was studied within the first 30 min post-injection. This revealed a much higher and increasing relative contribution of SECs, as they by far outnumber macrophages in zebrafish embryos, suggesting the importance of the macrophage:SECs ratio in a given tissue. Further characterizing macrophages on their efficiency in nanoparticle clearance, we show that inflammatory stimuli diminish the uptake of nanoparticles per cell. Our study demonstrates the strength of transgenic zebrafish embryos for intravital real-time and ultrastructural imaging of nanomaterials that may provide mechanistic insights into nanoparticle clearance in rodent models and humans.


Assuntos
Células Endoteliais/química , Macrófagos/química , Nanopartículas/metabolismo , Dióxido de Silício/metabolismo , Animais , Células Endoteliais/metabolismo , Cinética , Macrófagos/metabolismo , Nanopartículas/química , Tamanho da Partícula , Dióxido de Silício/química , Propriedades de Superfície , Fatores de Tempo , Peixe-Zebra/embriologia
10.
J Leukoc Biol ; 81(1): 263-71, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17046968

RESUMO

Macrophages detecting and migrating toward sites of injury and infection represent one of the first steps in an immune response. Here we directly image macrophage birth and migration in vivo in transgenic medaka fish. Macrophages are born as frequently dividing, immotile cells with spherical morphology that differentiate into flat, highly motile cells. They retain mitotic activity while spreading over the entire body. Cells follow restricted paths not only in directed migration, but also during patrolling. Along those paths the macrophages rapidly patrol the tissue and respond to wounding and bacterial infection from long distances. Upon injury they increase their speed and migratory persistence. Specifically targeting PI3-kinase isoforms efficiently blocks the wounding response and results in a distinct inhibition of cell motility and chemotaxis. Our study provides in situ insights into the properties of immature and migratory macrophages and presents a unique model to further test modulating compounds in vivo.


Assuntos
Quimiotaxia , Desenvolvimento Embrionário/fisiologia , Inflamação/metabolismo , Macrófagos/fisiologia , Oryzias/imunologia , Animais , Animais Geneticamente Modificados , Leucócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
11.
Nat Commun ; 7: 12875, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27641898

RESUMO

Failure to repair the sarcolemma leads to muscle cell death, depletion of stem cells and myopathy. Hence, membrane lesions are instantly sealed by a repair patch consisting of lipids and proteins. It has remained elusive how this patch is removed to restore cell membrane integrity. Here we examine sarcolemmal repair in live zebrafish embryos by real-time imaging. Macrophages remove the patch. Phosphatidylserine (PS), an 'eat-me' signal for macrophages, is rapidly sorted from adjacent sarcolemma to the repair patch in a Dysferlin (Dysf) dependent process in zebrafish and human cells. A previously unrecognized arginine-rich motif in Dysf is crucial for PS accumulation. It carries mutations in patients presenting with limb-girdle muscular dystrophy 2B. This underscores the relevance of this sequence and uncovers a novel pathophysiological mechanism underlying this class of myopathies. Our data show that membrane repair is a multi-tiered process involving immediate, cell-intrinsic mechanisms as well as myofiber/macrophage interactions.


Assuntos
Disferlina/metabolismo , Macrófagos/fisiologia , Proteínas de Membrana/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Fosfatidilserinas/metabolismo , Sarcolema/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Arginina/genética , Disferlina/genética , Embrião não Mamífero , Células HeLa , Humanos , Proteínas de Membrana/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
12.
Sci Rep ; 6: 25046, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27141993

RESUMO

Altered levels of trace elements are associated with increased oxidative stress that is eventually responsible for pathologic conditions. Oxidative stress has been proposed to be involved in eye diseases, including cataract formation. We visualized the distribution of metals and other trace elements in the eye of zebrafish embryos by micro X-ray fluorescence (µ-XRF) imaging. Many elements showed highest accumulation in the retinal pigment epithelium (RPE) of the zebrafish embryo. Knockdown of the zebrafish brown locus homologues tyrp1a/b eliminated accumulation of these elements in the RPE, indicating that they are bound by mature melanosomes. Furthermore, albino (slc45a2) mutants, which completely lack melanosomes, developed abnormal lens reflections similar to the congenital cataract caused by mutation of the myosin chaperon Unc45b, and an in situ spin trapping assay revealed increased oxidative stress in the lens of albino mutants. Finally transplanting a wildtype lens into an albino mutant background resulted in cataract formation. These data suggest that melanosomes in pigment epithelial cells protect the lens from oxidative stress during embryonic development, likely by buffering trace elements.


Assuntos
Desenvolvimento Embrionário , Cristalino/embriologia , Cristalino/fisiologia , Melanossomas/metabolismo , Peixe-Zebra/embriologia , Animais , Catarata/prevenção & controle , Cristalino/química , Estresse Oxidativo , Pigmentos Biológicos/metabolismo , Espectrometria por Raios X , Oligoelementos/análise
13.
Mech Dev ; 118(1-2): 91-8, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12351173

RESUMO

The widespread use of fish as model systems is still limited by the mosaic distribution of cells transiently expressing transgenes leading to a low frequency of transgenic fish. Here we present a strategy that overcomes this problem. Transgenes of interest were flanked by two I-SceI meganuclease recognition sites, and co-injected together with the I-SceI meganuclease enzyme into medaka embryos (Oryzias latipes) at the one-cell stage. First, the promoter dependent expression was strongly enhanced. Already in F0, 76% of the embryos exhibited uniform promoter dependent expression compared to 26% when injections were performed without meganuclease. Second, the transgenesis frequency was raised to 30.5%. Even more striking was the increase in the germline transmission rate. Whereas in standard protocols it does not exceed a few percent, the number of transgenic F1 offspring of an identified founder fish reached the optimum of 50% in most lines resulting from meganuclease co-injection. Southern blot analysis showed that the individual integration loci contain only one or few copies of the transgene in tandem. At a lower rate this method also leads to enhancer trapping effects, novel patterns that are likely due to the integration of the transgene in the vicinity of enhancer elements. Meganuclease co-injection thus provides a simple and highly efficient tool to improve transgenesis by microinjection.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/fisiologia , Animais , Animais Geneticamente Modificados , Southern Blotting , DNA/metabolismo , Elementos Facilitadores Genéticos , Peixes , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae , Fatores de Tempo , Transgenes , Peixe-Zebra
14.
Mech Dev ; 121(7-8): 659-71, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15210175

RESUMO

The metameric structure of the vertebrate trunk is generated by repeated formation of somites from the unsegmented presomitic mesoderm (PSM). We report the initial characterization of nine different mutants affecting segmentation that were isolated in a large-scale mutagenesis screen in Medaka (Oryzias latipes). Four mutants were identified that show a complete or partial absence of somites or somite boundaries. In addition, five mutations were found that cause fused somites or somites with irregular sizes and shapes. In situ hybridization analysis using specific markers involved in the segmentation clock and antero-posterior (A-P) polarity of somites revealed that the nine mutants can be compiled into two groups. In group 1, mutants exhibit defects in tailbud formation and PSM prepatterning, whereas A-P identity in the somites is defective in group 2 mutants. Three mutants (planlos, pll; schnelles ende, sne; samidare, sam) have characteristic phenotypes that are similar to those in zebrafish mutants affected in the Delta/Notch signaling pathway. The majority of mutants, however, exhibit somitic phenotypes distinct from those found in zebrafish, such as individually fused somites and irregular somite sizes. Thus, these Medaka mutants can be expected to provide clues to uncovering novel components essential for somitogenesis.


Assuntos
Oryzias/embriologia , Oryzias/genética , Somitos , Animais , Padronização Corporal/genética , Mutação
15.
Mech Dev ; 121(7-8): 673-85, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15210176

RESUMO

The forebrain, consisting of the telencephalon and diencephalon, is essential for processing sensory information. To genetically dissect formation of the forebrain in vertebrates, we carried out a systematic screen for mutations affecting morphogenesis of the forebrain in Medaka. Thirty-three mutations defining 25 genes affecting the morphological development of the forebrain were grouped into two classes. Class 1 mutants commonly showing a decrease in forebrain size, were further divided into subclasses 1A to 1D. Class 1A mutation (1 gene) caused an early defect evidenced by the lack of bf1 expression, Class 1B mutations (6 genes) patterning defects revealed by the aberrant expression of regional marker genes, Class 1C mutation (1 gene) a defect in a later stage, and Class 1D (3 genes) a midline defect analogous to the zebrafish one-eyed pinhead mutation. Class 2 mutations caused morphological abnormalities in the forebrain without considerably affecting its size, Class 2A mutations (6 genes) caused abnormalities in the development of the ventricle, Class 2B mutations (2 genes) severely affected the anterior commissure, and Class 2C (6 genes) mutations resulted in a unique forebrain morphology. Many of these mutants showed the compromised sonic hedgehog expression in the zona-limitans-intrathalamica (zli), arguing for the importance of this structure as a secondary signaling center. These mutants should provide important clues to the elucidation of the molecular mechanisms underlying forebrain development, and shed new light on phylogenically conserved and divergent functions in the developmental process.


Assuntos
Oryzias/embriologia , Oryzias/genética , Prosencéfalo/embriologia , Animais , Mutação , Fenótipo , Prosencéfalo/anormalidades
16.
Mech Dev ; 121(7-8): 703-14, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15210178

RESUMO

In a large scale mutagenesis screen of Medaka we identified 60 recessive zygotic mutations that affect retina development. Based on the onset and type of phenotypic abnormalities, the mutants were grouped into five categories: the first includes 11 mutants that are affected in neural plate and optic vesicle formation. The second group comprises 15 mutants that are impaired in optic vesicle growth. The third group includes 18 mutants that are affected in optic cup development. The fourth group contains 13 mutants with defects in retinal differentiation. 12 of these have smaller eyes, whereas one mutation results in enlarged eyes. The fifth group consists of three mutants with defects in retinal pigmentation. The collection of mutants will be used to address the molecular genetic mechanisms underlying vertebrate eye formation.


Assuntos
Oryzias/embriologia , Oryzias/genética , Retina/embriologia , Animais , Diferenciação Celular/genética , Genes Recessivos , Pigmentação/genética , Retina/citologia
17.
Mech Dev ; 121(7-8): 791-802, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15210186

RESUMO

We report here mutations affecting various aspects of liver development and function identified by multiple assays in a systematic mutagenesis screen in Medaka. The 22 identified recessive mutations assigned to 19 complementation groups fell into five phenotypic groups. Group 1, showing defective liver morphogenesis, comprises mutations in four genes, which may be involved in the regulation of growth or patterning of the gut endoderm. Group 2 comprises mutations in three genes that affect the laterality of the liver; in kendama mutants of this group, the laterality of the heart and liver is uncoupled and randomized. Group 3 includes mutations in three genes altering bile color, indicative of defects in hemoglobin-bilirubin metabolism and globin synthesis. Group 4 consists of mutations in three genes, characterized by a decrease in the accumulation of fluorescent metabolite of a phospholipase A(2) substrate, PED6, in the gall bladder. Lipid metabolism or the transport of lipid metabolites may be affected by these mutations. Mutations in Groups 3 and 4 may provide animal models for relevant human diseases. Group 5 mutations in six genes affect the formation of endoderm, endodermal rods and hepatic bud from which the liver develops. These Medaka mutations, identified by morphological and metabolite marker screens, should provide clues to understanding molecular mechanisms underlying formation of a functional liver.


Assuntos
Fígado/embriologia , Mutação , Oryzias/embriologia , Oryzias/genética , Animais , Padronização Corporal/genética , Endoderma , Vesícula Biliar/metabolismo , Hibridização In Situ , Metabolismo dos Lipídeos , Fígado/anormalidades , Fígado/fisiologia , Oryzias/fisiologia
18.
Mech Dev ; 121(7-8): 647-58, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15210174

RESUMO

A large-scale mutagenesis screen was performed in Medaka to identify genes acting in diverse developmental processes. Mutations were identified in homozygous F3 progeny derived from ENU-treated founder males. In addition to the morphological inspection of live embryos, other approaches were used to detect abnormalities in organogenesis and in specific cellular processes, including germ cell migration, nerve tract formation, sensory organ differentiation and DNA repair. Among 2031 embryonic lethal mutations identified, 312 causing defects in organogenesis were selected for further analyses. From these, 126 mutations were characterized genetically and assigned to 105 genes. The similarity of the development of Medaka and zebrafish facilitated the comparison of mutant phenotypes, which indicated that many mutations in Medaka cause unique phenotypes so far unrecorded in zebrafish. Even when mutations of the two fish species cause a similar phenotype such as one-eyed-pinhead or parachute, more genes were found in Medaka than in zebrafish that produced the same phenotype when mutated. These observations suggest that many Medaka mutants represent new genes and, therefore, are important complements to the collection of zebrafish mutants that have proven so valuable for exploring genomic function in development.


Assuntos
Mutação , Organogênese/genética , Oryzias/genética , Animais , Olho/embriologia , Células Germinativas , Oryzias/embriologia , Fenótipo , Prosencéfalo/embriologia , Tolerância a Radiação/genética , Projetos de Pesquisa , Somitos , Timo/embriologia
19.
PLoS One ; 10(10): e0137286, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26444552

RESUMO

Tissue injury and infection trigger innate immune responses. However, dysregulation may result in chronic inflammation and is commonly treated with corticosteroids and non-steroidal anti-inflammatory drugs. Unfortunately, long-term administration of both therapeutic classes can cause unwanted side effects. To identify alternative immune-modulatory compounds we have previously established a novel screening method using zebrafish larvae. Using this method we here present results of an in vivo high-content drug-repurposing screen, identifying 63 potent anti-inflammatory drugs that are in clinical use for other indications. Our approach reveals a novel pro-inflammatory role of nitric oxide. Nitric oxide affects leukocyte recruitment upon peripheral sensory nervous system or epithelial injury in zebrafish larvae both via soluble guanylate cyclase and in a soluble guanylate cyclase -independent manner through protein S-nitrosylation. Together, we show that our screening method can help to identify novel immune-modulatory activities and provide new mechanistic insights into the regulation of inflammatory processes.


Assuntos
Reposicionamento de Medicamentos/métodos , Guanilato Ciclase/metabolismo , Mediadores da Inflamação/farmacologia , Inflamação/tratamento farmacológico , Óxido Nítrico/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Sulfato de Cobre/toxicidade , Sequestradores de Radicais Livres/farmacologia , Técnicas de Silenciamento de Genes , Inflamação/genética , Larva/efeitos dos fármacos , Leucócitos/imunologia , Morfolinos/genética , Mucosa/efeitos dos fármacos , Mucosa/lesões , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo II/genética , Sistema Nervoso Periférico/efeitos dos fármacos , Guanilil Ciclase Solúvel , Peixe-Zebra
20.
BMC Biotechnol ; 4: 26, 2004 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-15507134

RESUMO

BACKGROUND: Genetic interference by DNA, mRNA or morpholino injection is a widely used approach to study gene function in developmental biology. However, the lack of temporal control over the activity of interfering molecules often hampers investigation of gene function required during later stages of embryogenesis. To elucidate the roles of genes during embryogenesis a precise temporal control of transgene expression levels in the developing organism is on demand. RESULTS: We have generated a transgenic Gal4/Vp16 activator line that is heat-shock inducible, thereby providing a tool to drive the expression of specific effector genes via Gal4/Vp16. Merging the Gal4/Vp16-UAS system with the I-SceI meganuclease and the Sleeping Beauty transposon system allows inducible gene expression in an entirely uniform manner without the need to generate transgenic effector lines. Combination of this system with fluorescent protein reporters furthermore facilitates the direct visualization of transgene expressing cells in live embryos. CONCLUSION: The combinatorial properties of this expression system provide a powerful tool for the analysis of gene function during embryonic and larval development in fish by ectopic expression of gene products.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Choque Térmico HSP70/genética , Oryzias/genética , Transativadores/genética , Animais , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Proteínas de Peixes/genética , Genes Reporter/genética , Vetores Genéticos/genética , Regiões Promotoras Genéticas/fisiologia , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção/métodos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA