Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 3234: 141-162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507205

RESUMO

The advent of X-ray Free Electron Lasers (XFELs) has ushered in a transformative era in the field of structural biology, materials science, and ultrafast physics. These state-of-the-art facilities generate ultra-bright, femtosecond-long X-ray pulses, allowing researchers to delve into the structure and dynamics of molecular systems with unprecedented temporal and spatial resolutions. The unique properties of XFEL pulses have opened new avenues for scientific exploration that were previously considered unattainable. One of the most notable applications of XFELs is in structural biology. Traditional X-ray crystallography, while instrumental in determining the structures of countless biomolecules, often requires large, high-quality crystals and may not capture highly transient states of proteins. XFELs, with their ability to produce diffraction patterns from nanocrystals or even single particles, have provided solutions to these challenges. XFEL has expanded the toolbox of structural biologists by enabling structural determination approaches such as Single Particle Imaging (SPI) and Serial X-ray Crystallography (SFX). Despite their remarkable capabilities, the journey of XFELs is still in its nascent stages, with ongoing advancements aimed at improving their coherence, pulse duration, and wavelength tunability.


Assuntos
Elétrons , Proteínas , Cristalografia por Raios X , Proteínas/química , Raios X , Lasers
2.
J Synchrotron Radiat ; 30(Pt 3): 582-590, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37026391

RESUMO

Owing to their large penetration depth and high resolution, X-rays are ideally suited to study structures and structural changes within intact biological cells. For this reason, X-ray-based techniques have been used to investigate adhesive cells on solid supports. However, these techniques cannot easily be transferred to the investigation of suspended cells in flow. Here, an X-ray compatible microfluidic device that serves as a sample delivery system and measurement environment for such studies is presented. As a proof of concept, the microfluidic device is applied to investigate chemically fixed bovine red blood cells by small-angle X-ray scattering (SAXS). A very good agreement is found between in-flow and static SAXS data. Moreover, the data are fitted with a hard-sphere model and screened Coulomb interactions to obtain the radius of the protein hemoglobin within the cells. Thus, the utility of this device for studying suspended cells with SAXS in continuous flow is demonstrated.


Assuntos
Eritrócitos , Proteínas , Animais , Bovinos , Raios X , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas/química
3.
J Synchrotron Radiat ; 26(Pt 3): 660-676, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074429

RESUMO

The European X-ray Free-Electron Laser (FEL) became the first operational high-repetition-rate hard X-ray FEL with first lasing in May 2017. Biological structure determination has already benefitted from the unique properties and capabilities of X-ray FELs, predominantly through the development and application of serial crystallography. The possibility of now performing such experiments at data rates more than an order of magnitude greater than previous X-ray FELs enables not only a higher rate of discovery but also new classes of experiments previously not feasible at lower data rates. One example is time-resolved experiments requiring a higher number of time steps for interpretation, or structure determination from samples with low hit rates in conventional X-ray FEL serial crystallography. Following first lasing at the European XFEL, initial commissioning and operation occurred at two scientific instruments, one of which is the Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument. This instrument provides a photon energy range, focal spot sizes and diagnostic tools necessary for structure determination of biological specimens. The instrumentation explicitly addresses serial crystallography and the developing single particle imaging method as well as other forward-scattering and diffraction techniques. This paper describes the major science cases of SPB/SFX and its initial instrumentation - in particular its optical systems, available sample delivery methods, 2D detectors, supporting optical laser systems and key diagnostic components. The present capabilities of the instrument will be reviewed and a brief outlook of its future capabilities is also described.

4.
Opt Lett ; 44(7): 1650-1653, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30933113

RESUMO

Intense, ultrashort, and high-repetition-rate X-ray pulses, combined with a femtosecond optical laser, allow pump-probe experiments with fast data acquisition and femtosecond time resolution. However, the relative timing of the X-ray pulses and the optical laser pulses can be controlled only to a level of the intrinsic error of the instrument which, without characterization, limits the time resolution of experiments. This limitation inevitably calls for a precise determination of the relative arrival time, which can be used after measurement for sorting and tagging the experimental data to a much finer resolution than it can be controlled to. The observed root-mean-square timing jitter between the X-ray and the optical laser at the SPB/SFX instrument at European XFEL was 308 fs. This first measurement of timing jitter at the European XFEL provides an important step in realizing ultrafast experiments at this novel X-ray source. A method for determining the change in the complex refractive index of samples is also presented.

5.
Opt Express ; 25(12): 13857-13871, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788829

RESUMO

Third generation synchrotron light sources offer high photon flux, partial spatial coherence, and ~10-10 s pulse widths. These enable hard X-ray phase-contrast imaging (XPCI) with single-bunch temporal resolutions. In this work, we exploited the MHz repetition rates of synchrotron X-ray pulses combined with indirect X-ray detection to demonstrate the potential of XPCI with millions of frames per second multiple-frame recording. This allows for the visualization of aperiodic or stochastic transient processes which are impossible to be realized using single-shot or stroboscopic XPCI. We present observations of various phenomena, such as crack tip propagation in glass, shock wave propagation in water and explosion during electric arc ignition, which evolve in the order of km/s (µm/ns).

6.
Chemphyschem ; 18(10): 1220-1223, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28295928

RESUMO

Encapsulating reacting biological or chemical samples in microfluidic droplets has the great advantage over single-phase flows of providing separate reaction compartments. These compartments can be filled in a combinatoric way and prevent the sample from adsorbing to the channel walls. In recent years, small-angle X-ray scattering (SAXS) in combination with microfluidics has evolved as a nanoscale method of such systems. Here, we approach two major challenges associated with combining droplet microfluidics and SAXS. First, we present a simple, versatile, and reliable device, which is both suitable for stable droplet formation and compatible with in situ X-ray measurements. Second, we solve the problem of "diluting" the sample signal by the signal from the oil separating the emulsion droplets by multiple fast acquisitions per droplet and data thresholding. We show that using our method, even the weakly scattering protein vimentin provides high signal-to-noise ratio data.


Assuntos
Técnicas Analíticas Microfluídicas , Proteínas/química , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Difração de Raios X
7.
Proc Natl Acad Sci U S A ; 111(29): 10562-7, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002512

RESUMO

Folding of globular proteins can be envisioned as the contraction of a random coil unfolded state toward the native state on an energy surface rough with local minima trapping frustrated species. These substructures impede productive folding and can serve as nucleation sites for aggregation reactions. However, little is known about the relationship between frustration and its underlying sequence determinants. Chemotaxis response regulator Y (CheY), a 129-amino acid bacterial protein, has been shown previously to populate an off-pathway kinetic trap in the microsecond time range. The frustration has been ascribed to premature docking of the N- and C-terminal subdomains or, alternatively, to the formation of an unproductive local-in-sequence cluster of branched aliphatic side chains, isoleucine, leucine, and valine (ILV). The roles of the subdomains and ILV clusters in frustration were tested by altering the sequence connectivity using circular permutations. Surprisingly, the stability and buried surface area of the intermediate could be increased or decreased depending on the location of the termini. Comparison with the results of small-angle X-ray-scattering experiments and simulations points to the accelerated formation of a more compact, on-pathway species for the more stable intermediate. The effect of chain connectivity in modulating the structures and stabilities of the early kinetic traps in CheY is better understood in terms of the ILV cluster model. However, the subdomain model captures the requirement for an intact N-terminal domain to access the native conformation. Chain entropy and aliphatic-rich sequences play crucial roles in biasing the early events leading to frustration in the folding of CheY.


Assuntos
Dobramento de Proteína , Análise de Sequência de Proteína , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Simulação por Computador , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Modelos Moleculares , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Termodinâmica , Difração de Raios X
8.
J Synchrotron Radiat ; 20(Pt 6): 820-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24121320

RESUMO

Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-time-resolution SAXS capability, built around the Kirkpatrick-Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed.


Assuntos
Proteínas/química , RNA/química , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Biopolymers ; 99(11): 888-96, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23868289

RESUMO

Recent experimental and computational advances in the protein folding arena have shown that the readout of the one-dimensional sequence information into three-dimensional structure begins within the first few microseconds of folding. The initiation of refolding reactions has been achieved by several means, including temperature jumps, flash photolysis, pressure jumps, and rapid mixing methods. One of the most commonly used means of initiating refolding of chemically denatured proteins is by turbulent flow mixing with refolding dilution buffer, where greater than 99% mixing efficiency has been achieved within 10's of microseconds. Successful interfacing of turbulent flow mixers with complementary detection methods, including time-resolved Fluorescence Spectroscopy (trFL), Förster Resonance Energy Transfer, Circular Dichroism, Small-Angle X-ray Scattering, Hydrogen Exchange followed by Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy, Infrared Spectroscopy (IR), and Fourier Transform IR Spectroscopy, has made this technique very attractive for monitoring various aspects of structure formation during folding. Although continuous-flow (CF) mixing devices interfaced with trFL detection have a dead time of only 30 µs, burst phases have been detected in this time scale during folding of peptides and of large proteins (e.g., CheY and TIM barrels). Furthermore, a major limitation of the CF mixing technique has been the requirement of large quantities of sample. In this brief communication, we will discuss the recent flurry of activity in micromachining and microfluidics, guided by computational simulations, which are likely to lead to dramatic improvements in time resolution and sample consumption for CF mixers over the next few years.


Assuntos
Desnaturação Proteica , Dobramento de Proteína , Dicroísmo Circular , Cinética , Estrutura Secundária de Proteína , Proteínas/química , Raios X
10.
J Phys Conf Ser ; 425(9)2013.
Artigo em Inglês | MEDLINE | ID: mdl-24489595

RESUMO

There are a growing number of high brightness synchrotron sources that require high-frame-rate detectors to provide the time-scales required for performing time-resolved diffraction experiments. We report on the development of a very high frame rate CMOS X-ray detector for time-resolved muscle diffraction and time-resolved solution scattering experiments. The detector is based on a low-afterglow scintillator, provides a megapixel resolution with frame rates of up to 120,000 frames per second, an effective pixel size of 64 µm, and can be adapted for various X-ray energies. The paper describes the detector design and initial results of time-resolved diffraction experiments on a synchrotron beamline.

11.
Nat Commun ; 13(1): 4708, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953469

RESUMO

The European X-ray Free Electron Laser (XFEL) and Linac Coherent Light Source (LCLS) II are extremely intense sources of X-rays capable of generating Serial Femtosecond Crystallography (SFX) data at megahertz (MHz) repetition rates. Previous work has shown that it is possible to use consecutive X-ray pulses to collect diffraction patterns from individual crystals. Here, we exploit the MHz pulse structure of the European XFEL to obtain two complete datasets from the same lysozyme crystal, first hit and the second hit, before it exits the beam. The two datasets, separated by <1 µs, yield up to 2.1 Å resolution structures. Comparisons between the two structures reveal no indications of radiation damage or significant changes within the active site, consistent with the calculated dose estimates. This demonstrates MHz SFX can be used as a tool for tracking sub-microsecond structural changes in individual single crystals, a technique we refer to as multi-hit SFX.


Assuntos
Elétrons , Lasers , Cristalografia por Raios X , Radiografia , Raios X
12.
Struct Dyn ; 6(6): 064702, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31832488

RESUMO

The new European X-ray Free-Electron Laser (European XFEL) is the first X-ray free-electron laser capable of delivering intense X-ray pulses with a megahertz interpulse spacing in a wavelength range suitable for atomic resolution structure determination. An outstanding but crucial question is whether the use of a pulse repetition rate nearly four orders of magnitude higher than previously possible results in unwanted structural changes due to either radiation damage or systematic effects on data quality. Here, separate structures from the first and subsequent pulses in the European XFEL pulse train were determined, showing that there is essentially no difference between structures determined from different pulses under currently available operating conditions at the European XFEL.

13.
Nat Commun ; 9(1): 4025, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279492

RESUMO

The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a ß-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.

14.
IUCrJ ; 5(Pt 5): 574-584, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224961

RESUMO

Liquid microjets are a common means of delivering protein crystals to the focus of X-ray free-electron lasers (FELs) for serial femtosecond crystallography measurements. The high X-ray intensity in the focus initiates an explosion of the microjet and sample. With the advent of X-ray FELs with megahertz rates, the typical velocities of these jets must be increased significantly in order to replenish the damaged material in time for the subsequent measurement with the next X-ray pulse. This work reports the results of a megahertz serial diffraction experiment at the FLASH FEL facility using 4.3 nm radiation. The operation of gas-dynamic nozzles that produce liquid microjets with velocities greater than 80 m s-1 was demonstrated. Furthermore, this article provides optical images of X-ray-induced explosions together with Bragg diffraction from protein microcrystals exposed to trains of X-ray pulses repeating at rates of up to 4.5 MHz. The results indicate the feasibility for megahertz serial crystallography measurements with hard X-rays and give guidance for the design of such experiments.

15.
ACS Nano ; 10(12): 10661-10670, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024349

RESUMO

X-ray imaging of intact biological cells is emerging as a complementary method to visible light or electron microscopy. Owing to the high penetration depth and small wavelength of X-rays, it is possible to resolve subcellular structures at a resolution of a few nanometers. Here, we apply scanning X-ray nanodiffraction in combination with time-lapse bright-field microscopy to nuclei of 3T3 fibroblasts and thus relate the observed structures to specific phases in the cell division cycle. We scan the sample at a step size of 250 nm and analyze the individual diffraction patterns according to a generalized Porod's law. Thus, we obtain information on the aggregation state of the nuclear DNA at a real space resolution on the order of the step size and in parallel structural information on the order of few nanometers. We are able to distinguish nucleoli, heterochromatin, and euchromatin in the nuclei and follow the compaction and decompaction during the cell division cycle.


Assuntos
Nucléolo Celular , DNA/química , Nanotecnologia , Ciclo Celular , Microscopia Eletrônica , Radiografia , Raios X
16.
ACS Nano ; 10(3): 3553-61, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26905642

RESUMO

In recent years, X-ray imaging of biological cells has emerged as a complementary alternative to fluorescence and electron microscopy. Different techniques were established and successfully applied to macromolecular assemblies and structures in cells. However, while the resolution is reaching the nanometer scale, the dose is increasing. It is essential to develop strategies to overcome or reduce radiation damage. Here we approach this intrinsic problem by combing two different X-ray techniques, namely ptychography and nanodiffraction, in one experiment and on the same sample. We acquire low dose ptychography overview images of whole cells at a resolution of 65 nm. We subsequently record high-resolution nanodiffraction data from regions of interest. By comparing images from the two modalities, we can exclude strong effects of radiation damage on the specimen. From the diffraction data we retrieve quantitative structural information from intracellular bundles of keratin intermediate filaments such as a filament radius of 5 nm, hexagonal geometric arrangement with an interfilament distance of 14 nm and bundle diameters on the order of 70 nm. Thus, we present an appealing combined approach to answer a broad range of questions in soft-matter physics, biophysics and biology.


Assuntos
Queratinas/ultraestrutura , Linhagem Celular , Humanos , Filamentos Intermediários/ultraestrutura , Queratinas/análise , Nanoestruturas/química , Difração de Raios X/métodos , Raios X
17.
J Mol Biol ; 426(9): 1980-94, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24607691

RESUMO

It is generally held that random-coil polypeptide chains undergo a barrier-less continuous collapse when the solvent conditions are changed to favor the fully folded native conformation. We test this hypothesis by probing intramolecular distance distributions during folding in one of the paradigms of folding reactions, that of cytochrome c. The Trp59-to-heme distance was probed by time-resolved Förster resonance energy transfer in the microsecond time range of refolding. Contrary to expectation, a state with a Trp59-heme distance close to that of the guanidinium hydrochloride (GdnHCl) denatured state is present after ~27 µs of folding. A concomitant decrease in the population of this state and an increase in the population of a compact high-FRET (Förster resonance energy transfer) state (efficiency>90%) show that the collapse is barrier limited. Small-angle X-ray scattering (SAXS) measurements over a similar time range show that the radius of gyration under native favoring conditions is comparable to that of the GdnHCl denatured unfolded state. An independent comprehensive global thermodynamic analysis reveals that marginally stable partially folded structures are also present in the nominally unfolded GdnHCl denatured state. These observations suggest that specifically collapsed intermediate structures with low stability in rapid equilibrium with the unfolded state may contribute to the apparent chain contraction observed in previous fluorescence studies using steady-state detection. In the absence of significant dynamic averaging of marginally stable partially folded states and with the use of probes sensitive to distance distributions, barrier-limited chain contraction is observed upon transfer of the GdnHCl denatured state ensemble to native-like conditions.


Assuntos
Citocromos c/química , Citocromos c/metabolismo , Dobramento de Proteína , Transferência Ressonante de Energia de Fluorescência , Cinética , Conformação Proteica , Espalhamento a Baixo Ângulo
18.
Biopolymers ; 95(8): 550-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21442608

RESUMO

Small-angle X-ray scattering (SAXS) is a powerful method for obtaining quantitative structural information on the size and shape of proteins, and it is increasingly used in kinetic studies of folding and association reactions. In this minireview, we discuss recent developments in using SAXS to obtain structural information on the unfolded ensemble and early folding intermediates of proteins using continuous-flow mixing devices. Interfacing of these micromachined devices to SAXS beamlines has allowed access to the microsecond time regime. The experimental constraints in implementation of turbulence and laminar flow-based mixers with SAXS detection and a comparison of the two approaches are presented. Current improvements and future prospects of microsecond time-resolved SAXS and the synergy with ab initio structure prediction and molecular dynamics simulations are discussed.


Assuntos
Dobramento de Proteína , Proteínas/química , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos , Animais , Espectroscopia de Ressonância Magnética , Soluções/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA