Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Chem Biol ; 16(5): 497-506, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32231343

RESUMO

We recently described glutathione peroxidase 4 (GPX4) as a promising target for killing therapy-resistant cancer cells via ferroptosis. The onset of therapy resistance by multiple types of treatment results in a stable cell state marked by high levels of polyunsaturated lipids and an acquired dependency on GPX4. Unfortunately, all existing inhibitors of GPX4 act covalently via a reactive alkyl chloride moiety that confers poor selectivity and pharmacokinetic properties. Here, we report our discovery that masked nitrile-oxide electrophiles, which have not been explored previously as covalent cellular probes, undergo remarkable chemical transformations in cells and provide an effective strategy for selective targeting of GPX4. The new GPX4-inhibiting compounds we describe exhibit unexpected proteome-wide selectivity and, in some instances, vastly improved physiochemical and pharmacokinetic properties compared to existing chloroacetamide-based GPX4 inhibitors. These features make them superior tool compounds for biological interrogation of ferroptosis and constitute starting points for development of improved inhibitors of GPX4.


Assuntos
Inibidores Enzimáticos/farmacologia , Nitrilas/química , Nitrilas/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Animais , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Ferroptose/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos SCID , Sondas Moleculares/química , Terapia de Alvo Molecular , Óxidos/química , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/química , Pró-Fármacos/química , Ratos Wistar , Selenocisteína/química , Selenocisteína/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
2.
Exp Brain Res ; 239(3): 923-936, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33427949

RESUMO

This study compared how two virtual display conditions of human body expressions influenced explicit and implicit dimensions of emotion perception and response behavior in women and men. Two avatars displayed emotional interactions (angry, sad, affectionate, happy) in a "pictorial" condition depicting the emotional interactive partners on a screen within a virtual environment and a "visual" condition allowing participants to share space with the avatars, thereby enhancing co-presence and agency. Subsequently to stimulus presentation, explicit valence perception and response tendency (i.e. the explicit tendency to avoid or approach the situation) were assessed on rating scales. Implicit responses, i.e. postural and autonomic responses towards the observed interactions were measured by means of postural displacement and changes in skin conductance. Results showed that self-reported presence differed between pictorial and visual conditions, however, it was not correlated with skin conductance responses. Valence perception was only marginally influenced by the virtual condition and not at all by explicit response behavior. There were gender-mediated effects on postural response tendencies as well as gender differences in explicit response behavior but not in valence perception. Exploratory analyses revealed a link between valence perception and preferred behavioral response in women but not in men. We conclude that the display condition seems to influence automatic motivational tendencies but not higher level cognitive evaluations. Moreover, intragroup differences in explicit and implicit response behavior highlight the importance of individual factors beyond gender.


Assuntos
Emoções , Adulto , Ansiedade , Expressão Facial , Feminino , Humanos , Julgamento , Masculino , Motivação , Adulto Jovem
3.
Sensors (Basel) ; 21(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071960

RESUMO

Maximizing performance success in sports is about continuous learning and adaptation processes. Aside from physiological, technical and emotional performance factors, previous research focused on perceptual skills, revealing their importance for decision-making. This includes deriving relevant environmental information as a result of eye, head and body movement interaction. However, to evaluate visual exploratory activity (VEA), generally utilized laboratory settings have restrictions that disregard the representativeness of assessment environments and/or decouple coherent cognitive and motor tasks. In vivo studies, however, are costly and hard to reproduce. Furthermore, the application of elaborate methods like eye tracking are cumbersome to implement and necessitate expert knowledge to interpret results correctly. In this paper, we introduce a virtual reality-based reproducible assessment method allowing the evaluation of VEA. To give insights into perceptual-cognitive processes, an easily interpretable head movement-based metric, quantifying VEA of athletes, is investigated. Our results align with comparable in vivo experiments and consequently extend them by showing the validity of the implemented approach as well as the use of virtual reality to determine characteristics among different skill levels. The findings imply that the developed method could provide accurate assessments while improving the control, validity and interpretability, which in turn informs future research and developments.


Assuntos
Esportes , Realidade Virtual , Atletas , Humanos , Aprendizagem , Movimento
4.
Sensors (Basel) ; 18(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513595

RESUMO

Running has a positive impact on human health and is an accessible sport for most people. There is high demand for tracking running performance and progress for amateurs and professionals alike. The parameters velocity and distance are thereby of main interest. In this work, we evaluate the accuracy of four algorithms, which calculate the stride velocity and stride length during running using data of an inertial measurement unit (IMU) placed in the midsole of a running shoe. The four algorithms are based on stride time, foot acceleration, foot trajectory estimation, and deep learning, respectively. They are compared using two studies: a laboratory-based study comprising 2377 strides from 27 subjects with 3D motion tracking as a reference and a field study comprising 12 subjects performing a 3.2-km run in a real-world setup. The results show that the foot trajectory estimation algorithm performs best, achieving a mean error of 0.032 ± 0.274 m/s for the velocity estimation and 0.022 ± 0.157 m for the stride length. An interesting alternative for systems with a low energy budget is the acceleration-based approach. Our results support the implementation decision for running velocity and distance tracking using IMUs embedded in the sole of a running shoe.


Assuntos
Reologia , Corrida/fisiologia , Sapatos , Aceleração , Algoritmos , Antropometria , Tomada de Decisões , Feminino , Pé/fisiologia , Humanos , Masculino , Movimento (Física)
5.
J Med Chem ; 66(5): 3431-3447, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36802665

RESUMO

USP21 belongs to the ubiquitin-specific protease (USP) subfamily of deubiquitinating enzymes (DUBs). Due to its relevance in tumor development and growth, USP21 has been reported as a promising novel therapeutic target for cancer treatment. Herein, we present the discovery of the first highly potent and selective USP21 inhibitor. Following high-throughput screening and subsequent structure-based optimization, we identified BAY-805 to be a non-covalent inhibitor with low nanomolar affinity for USP21 and high selectivity over other DUB targets as well as kinases, proteases, and other common off-targets. Furthermore, surface plasmon resonance (SPR) and cellular thermal shift assays (CETSA) demonstrated high-affinity target engagement of BAY-805, resulting in strong NF-κB activation in a cell-based reporter assay. To the best of our knowledge, BAY-805 is the first potent and selective USP21 inhibitor and represents a valuable high-quality in vitro chemical probe to further explore the complex biology of USP21.


Assuntos
Transdução de Sinais , Proteases Específicas de Ubiquitina , Regulação da Expressão Gênica , Endopeptidases
7.
JMIR Form Res ; 6(3): e33635, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230250

RESUMO

BACKGROUND: Fitness trackers and smart watches are frequently used to collect data in longitudinal medical studies. They allow continuous recording in real-life settings, potentially revealing previously uncaptured variabilities of biophysiological parameters and diseases. Adequate device accuracy is a prerequisite for meaningful research. OBJECTIVE: This study aims to assess the heart rate recording accuracy in two previously unvalidated devices: Fitbit Charge 4 and Samsung Galaxy Watch Active2. METHODS: Participants performed a study protocol comprising 5 resting and sedentary, 2 low-intensity, and 3 high-intensity exercise phases, lasting an average of 19 minutes 27 seconds. Participants wore two wearables simultaneously during all activities: Fitbit Charge 4 and Samsung Galaxy Watch Active2. Reference heart rate data were recorded using a medically certified Holter electrocardiogram. The data of the reference and evaluated devices were synchronized and compared at 1-second intervals. The mean, mean absolute error, mean absolute percentage error, Lin concordance correlation coefficient, Pearson correlation coefficient, and Bland-Altman plots were analyzed. RESULTS: A total of 23 healthy adults (mean age 24.2, SD 4.6 years) participated in our study. Overall, and across all activities, the Fitbit Charge 4 slightly underestimated the heart rate, whereas the Samsung Galaxy Watch Active2 overestimated it (-1.66 beats per minute [bpm]/3.84 bpm). The Fitbit Charge 4 achieved a lower mean absolute error during resting and sedentary activities (seated rest: 7.8 vs 9.4; typing: 8.1 vs 11.6; laying down [left]: 7.2 vs 9.4; laying down [back]: 6.0 vs 8.6; and walking slowly: 6.8 vs 7.7 bpm), whereas the Samsung Galaxy Watch Active2 performed better during and after low- and high-intensity activities (standing up: 12.3 vs 9.0; walking fast: 6.1 vs 5.8; stairs: 8.8 vs 6.9; squats: 15.7 vs 6.1; resting: 9.6 vs 5.6 bpm). CONCLUSIONS: Device accuracy varied with activity. Overall, both devices achieved a mean absolute percentage error of just <10%. Thus, they were considered to produce valid results based on the limits established by previous work in the field. Neither device reached sufficient accuracy during seated rest or keyboard typing. Thus, both devices may be eligible for use in respective studies; however, researchers should consider their individual study requirements.

8.
IEEE J Transl Eng Health Med ; 10: 2800109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865751

RESUMO

OBJECTIVE: Clinical urine tests are a key component of prenatal care. As of now, urine test strips are evaluated through a time consuming, often error-prone and operator-dependent visual color comparison of test strips and reference cards by medical staff. METHODS AND PROCEDURES: This work presents an automated pipeline for urinalysis with urine test strips using smartphone camera images in home environments, combining several image processing and color combination techniques. Our approach is applicable to off-the-shelf test strips in home conditions with no additional hardware required. For development and evaluation of our pipeline we collected image data from two sources: i) A user study (26 participants, 150 images) and ii) a lab study (135 images). RESULTS: We trained a region-based convolutional neural network that is able to detect the urine test strip location and orientation in images with a wide variety of light conditions, backgrounds and perspectives with an accuracy of 85.5%. The reference card can be robustly detected through a feature matching approach in 98.6% of the images. Color comparison by Hue channel (0.81 F1-Score), Matching factor (0.80 F1-Score) and Euclidean distance (0.70 F1-Score) were evaluated to determine the urinalysis results. CONCLUSION: We show that an automated smartphone-based colorimetric analysis of urine test strips in a home environment is feasible. It facilitates examinations and provides the possibility to shift care into an at-home environment. CLINICAL IMPACT: The findings demonstrate that routine urine examinations can be transferred into the home environment using a smartphone. Simultaneously, human error is avoided, accuracy is increased and medical staff is relieved.


Assuntos
Smartphone , Urinálise , Colorimetria , Feminino , Humanos , Gravidez , Cuidado Pré-Natal , Urinálise/métodos
9.
Cancer Cell ; 40(9): 939-956.e16, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985343

RESUMO

Mutations affecting isocitrate dehydrogenase (IDH) enzymes are prevalent in glioma, leukemia, and other cancers. Although mutant IDH inhibitors are effective against leukemia, they seem to be less active in aggressive glioma, underscoring the need for alternative treatment strategies. Through a chemical synthetic lethality screen, we discovered that IDH1-mutant glioma cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH). We developed a genetically engineered mouse model of mutant IDH1-driven astrocytoma and used it and multiple patient-derived models to show that the brain-penetrant DHODH inhibitor BAY 2402234 displays monotherapy efficacy against IDH-mutant gliomas. Mechanistically, this reflects an obligate dependence of glioma cells on the de novo pyrimidine synthesis pathway and mutant IDH's ability to sensitize to DNA damage upon nucleotide pool imbalance. Our work outlines a tumor-selective, biomarker-guided therapeutic strategy that is poised for clinical translation.


Assuntos
Neoplasias Encefálicas , Glioma , Leucemia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Inibidores Enzimáticos/uso terapêutico , Glioma/tratamento farmacológico , Glioma/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Camundongos , Mutação , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Salicilanilidas , Triazóis
10.
Bioorg Med Chem Lett ; 21(18): 5533-7, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21802293

RESUMO

Structure-activity relationships around a novel series of B-Raf(V600E) inhibitors are reported. The enzymatic and cellular potencies of inhibitors derived from two related hinge-binding groups were compared and3-methoxypyrazolopyridine proved to be superior. The 3-alkoxy group of lead B-Raf(V600E) inhibitor 1 was extended and minimally affected potency. The propyl sulfonamide tail of compound 1, which occupies the small lipophilic pocket formed by an outward shift of the αC-helix, was expanded to a series of arylsulfonamides. X-ray crystallography revealed that this lipophilic pocket unexpectedly enlarges to accommodate the bulkier aryl group.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Pirazóis/farmacologia , Piridinas/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Pirazóis/síntese química , Pirazóis/química , Piridinas/síntese química , Piridinas/química , Estereoisomerismo , Relação Estrutura-Atividade
11.
Acta Crystallogr D Struct Biol ; 77(Pt 2): 237-248, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33559612

RESUMO

Wild-type human glutathione peroxidase 4 (GPX4) was co-expressed with SBP2 (selenocysteine insertion sequence-binding protein 2) in human HEK cells to achieve efficient production of this selenocysteine-containing enzyme on a preparative scale for structural biology. The protein was purified and crystallized, and the crystal structure of the wild-type form of GPX4 was determined at 1.0 Šresolution. The overall fold and the active site are conserved compared with previously determined crystal structures of mutated forms of GPX4. A mass-spectrometry-based approach was developed to monitor the reaction of the active-site selenocysteine Sec46 with covalent inhibitors. This, together with the introduction of a surface mutant (Cys66Ser), enabled the crystal structure determination of GPX4 in complex with the covalent inhibitor ML162 [(S)-enantiomer]. The mass-spectrometry-based approach described here opens the path to further co-complex crystal structures of this potential cancer drug target in complex with covalent inhibitors.


Assuntos
Inibidores Enzimáticos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/química , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ligação Proteica , Conformação Proteica
12.
SLAS Discov ; 26(8): 947-960, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34154424

RESUMO

SMYD3 (SET and MYND domain-containing protein 3) is a protein lysine methyltransferase that was initially described as an H3K4 methyltransferase involved in transcriptional regulation. SMYD3 has been reported to methylate and regulate several nonhistone proteins relevant to cancer, including mitogen-activated protein kinase kinase kinase 2 (MAP3K2), vascular endothelial growth factor receptor 1 (VEGFR1), and the human epidermal growth factor receptor 2 (HER2). In addition, overexpression of SMYD3 has been linked to poor prognosis in certain cancers, suggesting SMYD3 as a potential oncogene and attractive cancer drug target. Here we report the discovery of a novel SMYD3 inhibitor. We performed a thermal shift assay (TSA)-based high-throughput screening (HTS) with 410,000 compounds and identified a novel benzodiazepine-based SMYD3 inhibitor series. Crystal structures revealed that this series binds to the substrate binding site and occupies the hydrophobic lysine binding pocket via an unprecedented hydrogen bonding pattern. Biochemical assays showed substrate competitive behavior. Following optimization and extensive biophysical validation with surface plasmon resonance (SPR) analysis and isothermal titration calorimetry (ITC), we identified BAY-6035, which shows nanomolar potency and selectivity against kinases and other PKMTs. Furthermore, BAY-6035 specifically inhibits methylation of MAP3K2 by SMYD3 in a cellular mechanistic assay with an IC50 <100 nM. Moreover, we describe a congeneric negative control to BAY-6035. In summary, BAY-6035 is a novel selective and potent SMYD3 inhibitor probe that will foster the exploration of the biological role of SMYD3 in diseased and nondiseased tissues.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
13.
ChemMedChem ; 15(10): 827-832, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32237114

RESUMO

Due to its frequent mutations in multiple lethal cancers, KRAS is one of the most-studied anticancer targets nowadays. Since the discovery of the druggable allosteric binding site containing a G12C mutation, KRASG12C has been the focus of attention in oncology research. We report here a computationally driven approach aimed at identifying novel and selective KRASG12C covalent inhibitors. The workflow involved initial enumeration of virtual molecules tailored for the KRAS allosteric binding site. Tools such as pharmacophore modeling, docking, and free-energy perturbations were deployed to prioritize the compounds with the best profiles. The synthesized naphthyridinone scaffold showed the ability to react with G12C and inhibit KRASG12C . Analogues were prepared to establish structure-activity relationships, while molecular dynamics simulations and crystallization of the inhibitor-KRASG12C complex highlighted an unprecedented binding mode.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Relação Estrutura-Atividade
14.
J Med Chem ; 63(2): 601-612, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31859507

RESUMO

The serine/threonine kinase TBK1 (TANK-binding kinase 1) and its homologue IKKε are noncanonical members of the inhibitor of the nuclear factor κB (IκB) kinase family. These kinases play important roles in multiple cellular pathways and, in particular, in inflammation. Herein, we describe our investigations on a family of benzimidazoles and the identification of the potent and highly selective TBK1/IKKε inhibitor BAY-985. BAY-985 inhibits the cellular phosphorylation of interferon regulatory factor 3 and displays antiproliferative efficacy in the melanoma cell line SK-MEL-2 but showed only weak antitumor activity in the SK-MEL-2 human melanoma xenograft model.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Fosforilação , Relação Estrutura-Atividade , Especificidade por Substrato
15.
IEEE Trans Vis Comput Graph ; 25(11): 3146-3157, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31425036

RESUMO

We explore motion parameters, more specifically gait parameters, as an objective indicator to assess simulator sickness in Virtual Reality (VR). We discuss the potential relationships between simulator sickness, immersion, and presence. We used two different camera pose (position and orientation) estimation methods for the evaluation of motion tasks in a large-scale VR environment: a simple model and an optimized model that allows for a more accurate and natural mapping of human senses. Participants performed multiple motion tasks (walking, balancing, running) in three conditions: a physical reality baseline condition, a VR condition with the simple model, and a VR condition with the optimized model. We compared these conditions with regard to the resulting sickness and gait, as well as the perceived presence in the VR conditions. The subjective measures confirmed that the optimized pose estimation model reduces simulator sickness and increases the perceived presence. The results further show that both models affect the gait parameters and simulator sickness, which is why we further investigated a classification approach that deals with non-linear correlation dependencies between gait parameters and simulator sickness. We argue that our approach could be used to assess and predict simulator sickness based on human gait parameters and we provide implications for future research.


Assuntos
Marcha/fisiologia , Enjoo devido ao Movimento/fisiopatologia , Movimento/fisiologia , Realidade Virtual , Adulto , Algoritmos , Gráficos por Computador , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Masculino , Modelos Estatísticos , Desempenho Psicomotor , Adulto Jovem
16.
ACS Med Chem Lett ; 10(11): 1537-1542, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31749907

RESUMO

6-(4-(Diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one, or DNMDP, potently and selectively inhibits phosphodiesterases 3A and 3B (PDE3A and PDE3B) and kills cancer cells by inducing PDE3A/B interactions with SFLN12. The structure-activity relationship (SAR) of DNMDP analogs was evaluated using a phenotypic viability assay, resulting in several compounds with suitable pharmacokinetic properties for in vivo analysis. One of these compounds, BRD9500, was active in an SK-MEL-3 xenograft model of cancer.

17.
Leukemia ; 33(10): 2403-2415, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30940908

RESUMO

Acute myeloid leukemia (AML) is a devastating disease, with the majority of patients dying within a year of diagnosis. For patients with relapsed/refractory AML, the prognosis is particularly poor with currently available treatments. Although genetically heterogeneous, AML subtypes share a common differentiation arrest at hematopoietic progenitor stages. Overcoming this differentiation arrest has the potential to improve the long-term survival of patients, as is the case in acute promyelocytic leukemia (APL), which is characterized by a chromosomal translocation involving the retinoic acid receptor alpha gene. Treatment of APL with all-trans retinoic acid (ATRA) induces terminal differentiation and apoptosis of leukemic promyelocytes, resulting in cure rates of over 80%. Unfortunately, similarly efficacious differentiation therapies have, to date, been lacking outside of APL. Inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in the de novo pyrimidine synthesis pathway, was recently reported to induce differentiation of diverse AML subtypes. In this report we describe the discovery and characterization of BAY 2402234 - a novel, potent, selective and orally bioavailable DHODH inhibitor that shows monotherapy efficacy and differentiation induction across multiple AML subtypes. Herein, we present the preclinical data that led to initiation of a phase I evaluation of this inhibitor in myeloid malignancies.


Assuntos
Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Di-Hidro-Orotato Desidrogenase , Feminino , Células HL-60 , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pirimidinas/metabolismo , Células THP-1 , Translocação Genética/efeitos dos fármacos
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 5319-5322, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28269461

RESUMO

Monitoring fetal wellbeing is key in modern obstetrics. While fetal movement is routinely used as a proxy to fetal wellbeing, accurate, noninvasive, long-term monitoring of fetal movement is challenging. A few accelerometer-based systems have been developed in the past few years, to tackle common issues in ultrasound measurement and enable remote, self-administrated monitoring of fetal movement during pregnancy. However, many questions remain unanswered to date on the optimal setup in terms of body-worn accelerometers as well as signal processing and machine learning techniques used to detect fetal movement. In this paper, we systematically analyze the trade-offs between sensor number and positioning, the presence of reference accelerometers outside of the abdominal area and provide guidelines on dealing with class imbalance. Using a dataset of 15 measurements collected employing 6 three-axial accelerometers we show that including a reference accelerometer on the back of the participant consistently improves fetal movement detection performance regardless of the number of sensors utilized. We also show that two accelerometers plus a reference accelerometer are sufficient for optimal results.


Assuntos
Acelerometria/instrumentação , Monitorização Fetal/métodos , Movimento Fetal , Processamento de Sinais Assistido por Computador , Acelerometria/métodos , Feminino , Monitorização Fetal/instrumentação , Humanos , Gravidez
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 522-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26736314

RESUMO

In the last decade the interest for heart rate variability analysis has increased tremendously. Related algorithms depend on accurate temporal localization of the heartbeat, e.g. the R-peak in electrocardiogram signals, especially in the presence of arrhythmia. This localization can be delivered by numerous solutions found in the literature which all lack an exact specification of their temporal precision. We implemented three different state-of-the-art algorithms and evaluated the precision of their R-peak localization. We suggest a method to estimate the overall R-peak temporal inaccuracy-dubbed beat slackness-of QRS detectors with respect to normal and abnormal beats. We also propose a simple algorithm that can complement existing detectors to reduce this slackness. Furthermore we define improvements to one of the three detectors allowing it to be used in real-time on mobile devices or embedded hardware. Across the entire MIT-BIH Arrhythmia Database, the average slackness of all the tested algorithms was 9ms for normal beats and 13ms for abnormal beats. Using our complementing algorithm this could be reduced to 4ms for normal beats and to 7ms for abnormal beats. The presented methods can be used to significantly improve the precision of R-peak detection and provide an additional measurement for QRS detector performance.


Assuntos
Eletrocardiografia , Algoritmos , Arritmias Cardíacas , Frequência Cardíaca , Humanos , Processamento de Sinais Assistido por Computador
20.
Org Lett ; 5(26): 4931-4, 2003 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-14682732

RESUMO

Expeditious and high-yielding Nazarov cyclizations of 2-alkoxy-1,4-pentadien-3-ones are described. An example of a catalytic asymmetric Nazarov cyclization is presented. [reaction: see text]

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA