Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mem Inst Oswaldo Cruz ; 113(8): e170452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29924131

RESUMO

BACKGROUND Malaria is responsible for 429,000 deaths per year worldwide, and more than 200 million cases were reported in 2015. Increasing parasite resistance has imposed restrictions to the currently available antimalarial drugs. Thus, the search for new, effective and safe antimalarial drugs is crucial. Heterocyclic compounds, such as dihydropyrimidinones (DHPM), synthesised via the Biginelli multicomponent reaction, as well as bicyclic compounds synthesised from DHPMs, have emerged as potential antimalarial candidates in the last few years. METHODS Thirty compounds were synthesised employing the Biginelli multicomponent reaction and subsequent one-pot substitution/cyclisation protocol; the compounds were then evaluated in vitro against chloroquine-resistant Plasmodium falciparum parasites (W2 strain). Drug cytotoxicity in baseline kidney African Green Monkey cells (BGM) was also evaluated. The most active in vitro compounds were evaluated against P. berghei parasites in mice. Additionally, we performed an in silico target fishing approach with the most active compounds, aiming to shed some light into the mechanism at a molecular level. RESULTS The synthetic route chosen was effective, leading to products with high purity and yields ranging from 10-84%. Three out of the 30 compounds tested were identified as active against the parasite and presented low toxicity. The in silico study suggested that among all the molecular targets identified by our target fishing approach, Protein Kinase 3 (PK5) and Glycogen Synthase Kinase 3ß (GSK-3ß) are the most likely molecular targets for the synthesised compounds. CONCLUSIONS We were able to easily obtain a collection of heterocyclic compounds with in vitro anti-P. falciparum activity that can be used as scaffolds for the design and development of new antiplasmodial drugs.


Assuntos
Antimaláricos/síntese química , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Pirimidinonas/síntese química , Pirróis/síntese química , Animais , Antimaláricos/farmacologia , Desenho de Fármacos , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Testes de Sensibilidade Parasitária , Pirimidinonas/farmacologia , Pirróis/farmacologia , Relação Estrutura-Atividade
2.
Curr Top Med Chem ; 22(5): 366-394, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35105288

RESUMO

Cardiovascular diseases (CVDs) comprise a group of diseases and disorders of the heart and blood vessels, which together are the number one cause of death worldwide, being associated with multiple genetic and modifiable risk factors, and that may directly arise from different etiologies. For a long time, the search for cardiovascular drugs was based on the old paradigm "one compound - one target", aiming to obtain a highly potent and selective molecule with only one desired molecular target. Although historically successful in the last decades, this approach ignores the multiple causes and the multifactorial nature of CVDs. Thus, over time, treatment strategies for cardiovascular diseases have changed, and, currently, pharmacological therapies for CVD are mainly based on the association of two or more drugs to control symptoms and reduce cardiovascular death. In this context, the development of multitarget drugs, i.e., compounds having the ability to act simultaneously at multiple sites, is an attractive and relevant strategy that can be even more advantageous to achieve predictable pharmacokinetic and pharmacodynamics correlations as well as better patient compliance. In this review, we aim to highlight the efforts and rational pharmacological bases for the design of some promising multitargeted compounds to treat important cardiovascular diseases like heart failure, atherosclerosis, acute myocardial infarction, pulmonary arterial hypertension, and arrhythmia.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Infarto do Miocárdio , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Sistemas de Liberação de Medicamentos , Humanos
3.
Eur J Med Chem ; 212: 113123, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33412421

RESUMO

Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes known to play a critical role in the indirect regulation of several intracellular metabolism pathways through the selective hydrolysis of the phosphodiester bonds of specific second messenger substrates such as cAMP (3',5'-cyclic adenosine monophosphate) and cGMP (3',5'-cyclic guanosine monophosphate), influencing the hypertrophy, contractility, apoptosis and fibroses in the cardiovascular system. The expression and/or activity of multiple PDEs is altered during heart failure (HF), which leads to changes in levels of cyclic nucleotides and function of cardiac muscle. Within the cardiovascular system, PDEs 1-5, 8 and 9 are expressed and are interesting targets for the HF treatment. In this comprehensive review we will present a briefly description of the biochemical importance of each cardiovascular related PDE to the HF, and cover almost all the "long and winding road" of designing and discovering ligands, hits, lead compounds, clinical candidates and drugs as PDE inhibitors in the last decade.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Desenho de Fármacos , Insuficiência Cardíaca/tratamento farmacológico , Inibidores de Fosfodiesterase/farmacologia , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Animais , Insuficiência Cardíaca/metabolismo , Humanos , Estrutura Molecular , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química
4.
Curr Top Med Chem ; 20(2): 99-110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31648638

RESUMO

INTRODUCTION: In this work DHPMs were combined with the quinoline nucleus to obtain new quinolinyl-pyrrolo[3,4-d]pyrimidine-2,5-dione compounds with improved antiplasmodial activity as well as decreased cytotoxicity. Nineteen quinolinyl-pyrrolo[3,4-d]pyrimidine-2,5-dione derivatives connected by a linker group to quinolone ring moieties with different substituents were synthesized and assayed against P. falciparum. MATERIALS AND METHODS: Nineteen quinolinyl-pyrrolo[3,4-d]pyrimidine-2,5-dione derivatives connected by a linker group to quinoline ring moieties with different substituents were synthesized and assayed against chloroquine-resistant Plasmodium falciparum, along with the reference drug chloroquine. Among these compounds, the derivatives with two methylene carbon spacers showed the best activity accompanied by low cytotoxicity. RESULTS: The derivative without substituents on the aromatic ring (2a) and the derivative with a chlorine group at position 4 (2d) provided the best results, with IC50 = 1.15 µM and 1.5 µM, respectively. CONCLUSION: Compared to the parent drugs, these compounds presented marked decreases in cytotoxicity, with MDL50 values over 1,000 µM and selectivity indexes of >869.5 and >666.6, respectively. The quinolinyl-pyrrolo[3,4-d]pyrimidine-2,5-dione framework appears to be promising for further studies as an antimalarial for overcoming the burden of resistance in P. falciparum.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Pirimidinas/farmacologia , Quinolinas/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Linhagem Celular , Cloroquina/farmacologia , Relação Dose-Resposta a Droga , Resistência a Medicamentos/efeitos dos fármacos , Haplorrinos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Pirimidinas/síntese química , Pirimidinas/química , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
5.
Mem. Inst. Oswaldo Cruz ; 113(8): e170452, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-955116

RESUMO

BACKGROUND Malaria is responsible for 429,000 deaths per year worldwide, and more than 200 million cases were reported in 2015. Increasing parasite resistance has imposed restrictions to the currently available antimalarial drugs. Thus, the search for new, effective and safe antimalarial drugs is crucial. Heterocyclic compounds, such as dihydropyrimidinones (DHPM), synthesised via the Biginelli multicomponent reaction, as well as bicyclic compounds synthesised from DHPMs, have emerged as potential antimalarial candidates in the last few years. METHODS Thirty compounds were synthesised employing the Biginelli multicomponent reaction and subsequent one-pot substitution/cyclisation protocol; the compounds were then evaluated in vitro against chloroquine-resistant Plasmodium falciparum parasites (W2 strain). Drug cytotoxicity in baseline kidney African Green Monkey cells (BGM) was also evaluated. The most active in vitro compounds were evaluated against P. berghei parasites in mice. Additionally, we performed an in silico target fishing approach with the most active compounds, aiming to shed some light into the mechanism at a molecular level. RESULTS The synthetic route chosen was effective, leading to products with high purity and yields ranging from 10-84%. Three out of the 30 compounds tested were identified as active against the parasite and presented low toxicity. The in silico study suggested that among all the molecular targets identified by our target fishing approach, Protein Kinase 3 (PK5) and Glycogen Synthase Kinase 3β (GSK-3β) are the most likely molecular targets for the synthesised compounds. CONCLUSIONS We were able to easily obtain a collection of heterocyclic compounds with in vitro anti-P. falciparum activity that can be used as scaffolds for the design and development of new antiplasmodial drugs.


Assuntos
Desenho de Fármacos , Testes de Sensibilidade Parasitária , Antimaláricos/síntese química , Antimaláricos/farmacologia , Pirimidinonas , Pirróis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA