RESUMO
ABSTRACT: We report a first-in-human clinical trial using chimeric antigen receptor (CAR) T cells targeting CD37, an antigen highly expressed in B- and T-cell malignancies. Five patients with relapsed or refractory CD37+ lymphoid malignancies were enrolled and infused with autologous CAR-37 T cells. CAR-37 T cells expanded in the peripheral blood of all patients and, at peak, comprised >94% of the total lymphocytes in 4 of 5 patients. Tumor responses were observed in 4 of 5 patients with 3 complete responses, 1 mixed response, and 1 patient whose disease progressed rapidly and with relative loss of CD37 expression. Three patients experienced prolonged and severe pancytopenia, and in 2 of these patients, efforts to ablate CAR-37 T cells, which were engineered to coexpress truncated epidermal growth factor receptor, with cetuximab were unsuccessful. Hematopoiesis was restored in these 2 patients after allogeneic hematopoietic stem cell transplantation. No other severe, nonhematopoietic toxicities occurred. We investigated the mechanisms of profound pancytopenia and did not observe activation of CAR-37 T cells in response to hematopoietic stem cells in vitro or hematotoxicity in humanized models. Patients with pancytopenia had sustained high levels of interleukin-18 (IL-18) with low levels of IL-18 binding protein in their peripheral blood. IL-18 levels were significantly higher in CAR-37-treated patients than in both cytopenic and noncytopenic cohorts of CAR-19-treated patients. In conclusion, CAR-37 T cells exhibited antitumor activity, with significant CAR expansion and cytokine production. CAR-37 T cells may be an effective therapy in hematologic malignancies as a bridge to hematopoietic stem cell transplant. This trial was registered at www.ClinicalTrials.gov as #NCT04136275.
Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Masculino , Pessoa de Meia-Idade , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Feminino , Receptores de Antígenos Quiméricos/imunologia , Adulto , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos CD , Idoso , Antígenos de Neoplasias/imunologia , Antígenos CD7/metabolismo , Transplante de Células-Tronco Hematopoéticas , Recidiva , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , TetraspaninasRESUMO
Chimeric antigen receptor (CAR) modified T cell therapies targeting BCMA have displayed impressive activity in the treatment of multiple myeloma. There are currently two FDA licensed products, ciltacabtagene autoleucel and idecabtagene vicleucel, for treating relapsed and refractory disease. Although correlative analyses performed by product manufacturers have been reported in clinical trials, there are limited options for reliable BCMA CAR T detection assays for physicians and researchers looking to explore it as a biomarker for clinical outcome. Given the known association of CAR T cell expansion kinetics with toxicity and response, being able to quantify BCMA CAR T cells routinely and accurately in the blood of patients can serve as a valuable asset. Here, we optimized an accurate and sensitive flow cytometry test using a PE-conjugated soluble BCMA protein, with a lower limit of quantitation of 0.19% of CD3+ T cells, suitable for use as a routine assay for monitoring the frequency of BCMA CAR T cells in the blood of patients receiving either ciltacabtagene autoleucel or idecabtagene vicleucel.
Assuntos
Antígeno de Maturação de Linfócitos B , Citometria de Fluxo , Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Citometria de Fluxo/métodos , Antígeno de Maturação de Linfócitos B/imunologia , Receptores de Antígenos Quiméricos/imunologia , Imunoterapia Adotiva/métodos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/sangue , Linfócitos T/imunologiaRESUMO
In this issue of Blood Cancer Discovery, Dhodapkar and colleagues find that myeloid, dendritic, and endogenous T-cell populations in the bone marrow microenvironment are associated with progression-free survival (PFS) in multiple myeloma patients responding to B-cell maturation antigen-targeted CAR T cells. Immunosuppressive myeloid cells are associated with short PFS, but a diverse T-cell receptor repertoire and more dendritic cells are associated with a longer PFS, suggesting a potential role for epitope spreading. See related article by Dhodapkar et al., p. 490 (6).