Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(20): 11764-11773, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33982714

RESUMO

Ni based catalysts have been widely studied for H2 production due to the ability of Ni to break C-C and C-H bonds. In this work, we study inverse catalysts prepared by well-controlled sub-monolayer deposition of CeO2 nanocubes onto Ni thin films for ethanol steam reforming (ESR). Results show that controlling the coverage of CeO2 nanocubes on Ni enhances H2 production by more than an order of magnitude compared to pure Ni. Contrary to the idea that C deposits must be continuously oxidized for sustained H2 production, the surface of the most active catalysts show significant C deposition, yet no deactivation is observed. HAADF-STEM analysis reveals the formation of carbon filaments (CFILs), which propel Ni particles upward at the filament tips via a catalytic tip growth mechanism, resulting in a Ni@CFIL active phase for ESR. Near-ambient pressure XPS indicates that the Ni@CFIL active phase forms as a result of C gradients at the interface between regions of pure Ni metal and domains of closely packed CeO2 nanocubes. These results show that the mesoscale morphology of deposited CeO2 nanocubes is responsible for templating the formation of a Ni@CFIL catalyst, which resists deactivation leading to highly active and stable H2 production from ethanol.

2.
J Am Chem Soc ; 141(49): 19257-19262, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710473

RESUMO

Herein, we report a Ni-catalyzed reductive coupling for the synthesis of benzonitriles from aryl (pseudo)halides and an electrophilic cyanating reagent, 2-methyl-2-phenyl malononitrile (MPMN). MPMN is a bench-stable, carbon-bound electrophilic CN reagent that does not release cyanide under the reaction conditions. A variety of medicinally relevant benzonitriles can be made in good yields. Addition of NaBr to the reaction mixture allows for the use of more challenging aryl electrophiles such as aryl chlorides, tosylates, and triflates. Mechanistic investigations suggest that NaBr plays a role in facilitating oxidative addition with these substrates.

3.
ACS Synth Biol ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375864

RESUMO

CRISPR gene editing strategies are shaping cell therapies through precise and tunable control over gene expression. However, limitations in safely delivering high quantities of CRISPR machinery demand careful target gene selection to achieve reliable therapeutic effects. Informed target gene selection requires a thorough understanding of the involvement of target genes in gene regulatory networks (GRNs) and thus their impact on cell phenotype. Effective decoding of these complex networks has been achieved using machine learning models, but current techniques are limited to single cell types and focus mainly on transcription factors, limiting their applicability to CRISPR strategies. To address this, we present CRISPR-GEM, a multilayer perceptron (MLP) based synthetic GRN constructed to accurately predict the downstream effects of CRISPR gene editing. First, input and output nodes are identified as differentially expressed genes between defined experimental and target cell/tissue types, respectively. Then, MLP training learns regulatory relationships in a black-box approach allowing accurate prediction of output gene expression using only input gene expression. Finally, CRISPR-mimetic perturbations are made to each input gene individually, and the resulting model predictions are compared to those for the target group to score and assess each input gene as a CRISPR candidate. The top scoring genes provided by CRISPR-GEM therefore best modulate experimental group GRNs to motivate transcriptomic shifts toward a target group phenotype. This machine learning model is the first of its kind for predicting optimal CRISPR target genes and serves as a powerful tool for enhanced CRISPR strategies across a range of cell therapies.

4.
Nat Genet ; 56(8): 1678-1688, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39060501

RESUMO

X chromosome inactivation (XCI) generates clonal heterogeneity within XX individuals. Combined with sequence variation between human X chromosomes, XCI gives rise to intra-individual clonal diversity, whereby two sets of clones express mutually exclusive sequence variants present on one or the other X chromosome. Here we ask whether such clones merely co-exist or potentially interact with each other to modulate the contribution of X-linked diversity to organismal development. Focusing on X-linked coding variation in the human STAG2 gene, we show that Stag2variant clones contribute to most tissues at the expected frequencies but fail to form lymphocytes in Stag2WT Stag2variant mouse models. Unexpectedly, the absence of Stag2variant clones from the lymphoid compartment is due not solely to cell-intrinsic defects but requires continuous competition by Stag2WT clones. These findings show that interactions between epigenetically diverse clones can operate in an XX individual to shape the contribution of X-linked genetic diversity in a cell-type-specific manner.


Assuntos
Cromossomos Humanos X , Genes Ligados ao Cromossomo X , Variação Genética , Inativação do Cromossomo X , Humanos , Animais , Inativação do Cromossomo X/genética , Camundongos , Cromossomos Humanos X/genética , Feminino , Proteínas de Ciclo Celular/genética , Antígenos Nucleares/genética , Linfócitos/metabolismo , Cromossomo X/genética , Coesinas
5.
Nat Struct Mol Biol ; 30(6): 853-859, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37081319

RESUMO

In the early stages of mitosis, cohesin is released from chromosome arms but not from centromeres. The protection of centromeric cohesin by SGO1 maintains the sister chromatid cohesion that resists the pulling forces of microtubules until all chromosomes are attached in a bipolar manner to the mitotic spindle. Here we present the X-ray crystal structure of a segment of human SGO1 bound to a conserved surface of the cohesin complex. SGO1 binds to a composite interface formed by the SA2 and SCC1RAD21 subunits of cohesin. SGO1 shares this binding interface with CTCF, indicating that these distinct chromosomal regulators control cohesin through a universal principle. This interaction is essential for the localization of SGO1 to centromeres and protects centromeric cohesin against WAPL-mediated cohesin release. SGO1-cohesin binding is maintained until the formation of microtubule-kinetochore attachments and is required for faithful chromosome segregation and the maintenance of a stable karyotype.


Assuntos
Proteínas de Ciclo Celular , Centrômero , Humanos , Células HeLa , Centrômero/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cinetocoros , Mitose , Segregação de Cromossomos , Cromátides/metabolismo
6.
Antibiotics (Basel) ; 11(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35453279

RESUMO

The bacterial cell wall is essential for protecting bacteria from the surrounding environment and maintaining the integrity of bacteria cells. The MurA enzyme, which is an essential enzyme involved in bacterial cell wall synthesis, could be a good drug target for antibiotics. Although fosfomycin is used clinically as a MurA inhibitor, resistance to this antibiotic is a concern. Here we used molecular docking-based virtual screening approaches to identify potential MurA inhibitors from 1.412 million compounds from three databases. Thirty-three top compounds from virtual screening were experimentally tested in Listeria innocua (Gram-positive bacterium) and Escherichia coli (Gram-negative bacterium). Compound 2-Amino-5-bromobenzimidazole (S17) showed growth inhibition effect in both L. innocua and E. coli, with the same Minimum Inhibitory Concentration (MIC) value of 0.5 mg/mL. Compound 2-[4-(dimethylamino)benzylidene]-n-nitrohydrazinecarboximidamide (C1) had growth inhibition effect only in L. innocua, with a MIC value of 0.5 mg/mL. Two FDA-approved drugs, albendazole (S4) and diflunisal (S8), had a growth inhibition effect only in E. coli, with a MIC value of 0.0625 mg/mL. The identified MurA inhibitors could be potential novel antibiotics. Furthermore, they could be potential fosfomycin substitutes for the fosfomycin-resistant strains.

7.
Cell Rep ; 25(3): 749-760.e6, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332653

RESUMO

Deviating from the normal karyotype dramatically changes gene dosage, in turn decreasing the robustness of biological networks. Consequently, aneuploidy is poorly tolerated by normal somatic cells and acts as a barrier to transformation. Paradoxically, however, karyotype heterogeneity drives tumor evolution and the emergence of therapeutic drug resistance. To better understand how cancer cells tolerate aneuploidy, we focused on the p38 stress response kinase. We show here that p38-deficient cells upregulate glycolysis and avoid post-mitotic apoptosis, leading to the emergence of aneuploid subclones. We also show that p38 deficiency upregulates the hypoxia-inducible transcription factor Hif-1α and that inhibiting Hif-1α restores apoptosis in p38-deficent cells. Because hypoxia and aneuploidy are both barriers to tumor progression, the ability of Hif-1α to promote cell survival following chromosome missegregation raises the possibility that aneuploidy tolerance coevolves with adaptation to hypoxia.


Assuntos
Aneuploidia , Apoptose , Cromossomos Humanos/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Sistemas CRISPR-Cas , Neoplasias do Colo , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/genética , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA