Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(5): 1865-1876, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38334166

RESUMO

The response of plants to increasing atmospheric CO2 depends on the ecological context where the plants are found. Several experiments with elevated CO2 (eCO2) have been done worldwide, but the Amazonian forest understory has been neglected. As the central Amazon is limited by light and phosphorus, understanding how understory responds to eCO2 is important for foreseeing how the forest will function in the future. In the understory of a natural forest in the Central Amazon, we installed four open-top chambers as control replicates and another four under eCO2 (+250 ppm above ambient levels). Under eCO2, we observed increases in carbon assimilation rate (67%), maximum electron transport rate (19%), quantum yield (56%), and water use efficiency (78%). We also detected an increase in leaf area (51%) and stem diameter increment (65%). Central Amazon understory responded positively to eCO2 by increasing their ability to capture and use light and the extra primary productivity was allocated to supporting more leaf and conducting tissues. The increment in leaf area while maintaining transpiration rates suggests that the understory will increase its contribution to evapotranspiration. Therefore, this forest might be less resistant in the future to extreme drought, as no reduction in transpiration rates were detected.


Assuntos
Dióxido de Carbono , Fotossíntese , Fotossíntese/fisiologia , Florestas , Transporte de Elétrons , Folhas de Planta
2.
Glob Chang Biol ; 28(6): 2095-2110, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927319

RESUMO

Under ongoing global climate change, drought periods are predicted to increase in frequency and intensity in the future. Under these circumstances, it is crucial for tree's survival to recover their restricted functionalities quickly after drought release. To elucidate the recovery of carbon (C) transport rates in c. 70-year-old Norway spruce (Picea abies [L.] KARST.) after 5 years of recurrent summer droughts, we conducted a continuous whole-tree 13 C labeling experiment in parallel with watering. We determined the arrival time of current photoassimilates in major C sinks by tracing the 13 C label in stem and soil CO2 efflux, and tips of living fine roots. In the first week after watering, aboveground C transport rates (CTR) from crown to trunk base were still 50% lower in previously drought-stressed trees (0.16 ± 0.01 m h-1 ) compared to controls (0.30 ± 0.06 m h-1 ). Conversely, CTR below ground, that is, from the trunk base to soil CO2 efflux were already similar between treatments (c. 0.03 m h-1 ). Two weeks after watering, aboveground C transport of previously drought-stressed trees recovered to the level of the controls. Furthermore, regrowth of water-absorbing fine roots upon watering was supported by faster incorporation of 13 C label in previously drought-stressed (within 12 ± 10 h upon arrival at trunk base) compared to control trees (73 ± 10 h). Thus, the whole-tree C transport system from the crown to soil CO2 efflux fully recovered within 2 weeks after drought release, and hence showed high resilience to recurrent summer droughts in mature Norway spruce forests. This high resilience of the C transport system is an important prerequisite for the recovery of other tree functionalities and productivity.


Assuntos
Picea , Carbono/metabolismo , Secas , Noruega , Árvores/metabolismo
3.
Glob Chang Biol ; 28(23): 6889-6905, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36039835

RESUMO

After drought events, tree recovery depends on sufficient carbon (C) allocation to the sink organs. The present study aimed to elucidate dynamics of tree-level C sink activity and allocation of recent photoassimilates (Cnew ) and stored C in c. 70-year-old Norway spruce (Picea abies) trees during a 4-week period after drought release. We conducted a continuous, whole-tree 13 C labeling in parallel with controlled watering after 5 years of experimental summer drought. The fate of Cnew to growth and CO2 efflux was tracked along branches, stems, coarse- and fine roots, ectomycorrhizae and root exudates to soil CO2 efflux after drought release. Compared with control trees, drought recovering trees showed an overall 6% lower C sink activity and 19% less allocation of Cnew to aboveground sinks, indicating a low priority for aboveground sinks during recovery. In contrast, fine-root growth in recovering trees was seven times greater than that of controls. However, only half of the C used for new fine-root growth was comprised of Cnew while the other half was supplied by stored C. For drought recovery of mature spruce trees, in addition to Cnew , stored C appears to be critical for the regeneration of the fine-root system and the associated water uptake capacity.


Assuntos
Picea , Secas , Carbono , Dióxido de Carbono , Árvores , Água
4.
Plant Cell Environ ; 44(4): 1243-1256, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32683699

RESUMO

Hydraulic redistribution (HR) can buffer drought events of tree individuals, however, its relevance for neighbouring trees remains unclear. Here, we quantified HR to neighbouring trees in single- and mixed-species combinations. We hypothesized that uptake of HR water positively correlates with root length, number of root tips and root xylem hydraulic conductivity and that neighbours in single-species combinations receive more HR water than in phylogenetic distant mixed-species combinations. In a split-root experiment, a sapling with its roots split between two pots redistributed deuterium labelled water from a moist to a dry pot with an additional tree each. We quantified HR water received by the sapling in the dry pot for six temperate tree species. After 7 days, one quarter of the water in roots (2.1 ± 0.4 ml), stems (0.8 ± 0.2 ml) and transpiration (1.0 ± 0.3 ml) of the drought stressed sapling originated from HR. The amount of HR water transpired by the receiving plant stayed constant throughout the experiment. While the uptake of HR water increased with root length, species identity did not affect HR as saplings of Picea abies ((L.) Karst) and Fagus sylvatica (L.) in single- and mixed-species combinations received the same amount of HR water.


Assuntos
Florestas , Árvores/fisiologia , Acer/crescimento & desenvolvimento , Acer/fisiologia , Desidratação , Fagaceae/crescimento & desenvolvimento , Fagaceae/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Transpiração Vegetal , Pseudotsuga/crescimento & desenvolvimento , Pseudotsuga/fisiologia , Quercus/crescimento & desenvolvimento , Quercus/fisiologia , Árvores/crescimento & desenvolvimento , Água/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/fisiologia
5.
Mol Plant Microbe Interact ; 32(6): 770-781, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30753106

RESUMO

Herbivores and mycorrhizal fungi interactively influence growth, resource utilization, and plant defense responses. We studied these interactions in a tritrophic system comprising Quercus robur, the herbivore Lymantria dispar, and the ectomycorrhizal fungus Piloderma croceum under controlled laboratory conditions at the levels of gene expression and carbon and nitrogen (C/N) allocation. Taking advantage of the endogenous rhythmic growth displayed by oak, we thereby compared gene transcript abundances and resource shifts during shoot growth with those during the alternating root growth flushes. During root flush, herbivore feeding on oak leaves led to an increased expression of genes related to plant growth and enriched gene ontology terms related to cell wall, DNA replication, and defense. C/N-allocation analyses indicated an increased export of resources from aboveground plant parts to belowground. Accordingly, the expression of genes related to the transport of carbohydrates increased upon herbivore attack in leaves during the root flush stage. Inoculation with an ectomycorrhizal fungus attenuated these effects but, instead, caused an increased expression of genes related to the production of volatile organic compounds. We conclude that oak defense response against herbivory is strong in root flush at the transcriptomic level but this response is strongly inhibited by inoculation with ectomycorrhizal fungi and it is extremely weak at shoot flush.


Assuntos
Herbivoria , Micorrizas , Quercus , Regulação da Expressão Gênica de Plantas , Herbivoria/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Quercus/microbiologia
6.
New Phytol ; 218(1): 15-28, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29488280

RESUMO

Accumulating evidence highlights increased mortality risks for trees during severe drought, particularly under warmer temperatures and increasing vapour pressure deficit (VPD). Resulting forest die-off events have severe consequences for ecosystem services, biophysical and biogeochemical land-atmosphere processes. Despite advances in monitoring, modelling and experimental studies of the causes and consequences of tree death from individual tree to ecosystem and global scale, a general mechanistic understanding and realistic predictions of drought mortality under future climate conditions are still lacking. We update a global tree mortality map and present a roadmap to a more holistic understanding of forest mortality across scales. We highlight priority research frontiers that promote: (1) new avenues for research on key tree ecophysiological responses to drought; (2) scaling from the tree/plot level to the ecosystem and region; (3) improvements of mortality risk predictions based on both empirical and mechanistic insights; and (4) a global monitoring network of forest mortality. In light of recent and anticipated large forest die-off events such a research agenda is timely and needed to achieve scientific understanding for realistic predictions of drought-induced tree mortality. The implementation of a sustainable network will require support by stakeholders and political authorities at the international level.


Assuntos
Secas , Florestas , Árvores/fisiologia , Previsões , Geografia , Modelos Teóricos , Probabilidade
7.
Plant Cell Environ ; 39(9): 2004-13, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27155532

RESUMO

The (13/12) C ratio in plant roots is likely dynamic depending on root function (storage versus uptake), but to date, little is known about the effect of season and root order (an indicator of root function) on the isotopic composition of C-rich fractions in roots. To address this, we monitored the stable isotopic composition of one evergreen (Picea abies) and one deciduous (Fagus sylvatica), tree species' roots by measuring δ(13) C of bulk, respired and labile C, and starch from first/second and third/fourth order roots during spring and fall root production periods. In both species, root order differences in δ(13) C were observed in bulk organic matter, labile, and respired C fractions. Beech exhibited distinct seasonal trends in δ(13) C of respired C, while spruce did not. In fall, first/second order beech roots were significantly depleted in (13) C, whereas spruce roots were enriched compared to higher order roots. Species variation in δ (13) C of respired C may be partially explained by seasonal shifts from enriched to depleted C substrates in deciduous beech roots. Regardless of species identity, differences in stable C isotopic composition of at least two root order groupings (first/second, third/fourth) were apparent, and should hereafter be separated in belowground C-supply-chain inquiry.


Assuntos
Isótopos de Carbono/metabolismo , Fagus/metabolismo , Picea/metabolismo , Raízes de Plantas/metabolismo , Estações do Ano , Metabolismo dos Carboidratos , Respiração Celular , Clima , Amido/metabolismo
8.
Rapid Commun Mass Spectrom ; 29(23): 2233-44, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26522315

RESUMO

RATIONALE: We investigated the applicability of tree-ring whole-wood material for δ(18)O and δ(13)C analysis in comparison with the more time- and resource-intensive use of cellulose, by considering possible variability between (i) five different tree species (Fagus sylvatica, Quercus robur, Picea abies, Abies alba, Pseudotsuga menziesii), (ii) two sites that differ in soil moisture, and (iii) climate conditions within a 10-year period. METHODS: Stem cores of 30 individual trees (n = 3 trees per each species and site) were sampled from two sites in south Germany (Bavaria), and tree rings within sapwood of the years 2001-2010 were separated. The δ(18)O and δ(13)C values from homogenized tree-ring whole wood and from extracted cellulose were measured by mass spectrometry. Species-specific offsets in isotope values were analyzed and the responses in isotopic signature to climate variability including a single drought event were compared between whole-wood and cellulose. RESULTS: A constant offset in δ(18)O values of ca 5‰ between wood and cellulose was observed for most species independent of site conditions, with a significant difference between beech and Douglas-fir, while inter-annual variability was only observed in oak. The offset in δ(13)C values ranged between 1.45 and 1.84‰ across species, sites and years. Both materials generally showed similar strength in responses to temperature, precipitation and soil water availability, particularly for conifers. Resistance to severe drought stress--partly more strongly reflected in the δ(13)C values of cellulose--was lower for conifers than for the deciduous species. CONCLUSIONS: Wood material from the sapwood of the studied tree species is as useful as cellulose for studying environmental effects on tree-ring δ(18)O and δ(13)C values at a short-term scale as considered in most ecophysiological studies. The more variable response of oak may require further investigations.


Assuntos
Abies/química , Celulose/química , Fagus/química , Picea/química , Pseudotsuga/química , Quercus/química , Madeira/química , Abies/crescimento & desenvolvimento , Isótopos de Carbono/análise , Clima , Secas , Fagus/crescimento & desenvolvimento , Espectrometria de Massas , Isótopos de Oxigênio/análise , Picea/crescimento & desenvolvimento , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Pseudotsuga/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Solo/química , Especificidade da Espécie , Água/análise , Madeira/crescimento & desenvolvimento
9.
New Phytol ; 203(4): 1282-1290, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24902781

RESUMO

The root-rot pathogen Phytophthora quercina is a key determinant of oak decline in Europe. The susceptibility of pedunculate oak (Quercus robur) to this pathogen has been hypothesized to depend on the carbon availability in roots as an essential resource for defense. Microcuttings of Q. robur undergo an alternating rhythm of root and shoot growth. Inoculation of mycorrhizal (Piloderma croceum) and nonmycorrhizal oak roots with P. quercina was performed during both growth phases, that is, root flush (RF) and shoot flush (SF). Photosynthetic and morphological responses as well as concentrations of nonstructural carbohydrates (NSC) were analyzed. Infection success was quantified by the presence of pathogen DNA in roots. Concentrations of NSC in roots depended on the alternating root/shoot growth rhythm, being high and low during RF and SF, respectively. Infection success was high during RF and low during SF, resulting in a significantly positive correlation between pathogen DNA and NSC concentration in roots, contrary to the hypothesis. The alternating growth of roots and shoots plays a crucial role for the susceptibility of lateral roots to the pathogen. NSC availability in oak roots has to be considered as a benchmark for susceptibility rather than resistance against P. quercina.


Assuntos
Carboidratos/farmacologia , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Quercus/microbiologia , Biomassa , DNA/metabolismo , Suscetibilidade a Doenças , Complexo de Proteína do Fotossistema II/metabolismo , Phytophthora/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Quercus/efeitos dos fármacos , Solubilidade , Amido/metabolismo
10.
Plant Cell Environ ; 37(1): 254-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23763645

RESUMO

Leaf photosynthesis of the sensitive plant Mimosa pudica displays a transient knockout in response to electrical signals induced by heat stimulation. This study aims at clarifying the underlying mechanisms, in particular, the involvement of respiration. To this end, leaf gas exchange and light reactions of photosynthesis were assessed under atmospheric conditions largely eliminating photorespiration by either elevated atmospheric CO2 or lowered O2 concentration (i.e. 2000 µmol mol(-1) or 1%, respectively). In addition, leaf gas exchange was studied in the absence of light. Under darkness, heat stimulation caused a transient increase of respiratory CO2 release simultaneously with stomatal opening, hence reflecting direct involvement of respiratory stimulation in the drop of the net CO2 uptake rate. However, persistence of the transient decline in net CO2 uptake rate under illumination and elevated CO2 or 1% O2 makes it unlikely that photorespiration is the metabolic origin of the respiratory CO2 release. In conclusion, the transient knockout of net CO2 uptake is at least partially attributed to an increased CO2 release through mitochondrial respiration as stimulated by electrical signals. Putative CO2 limitation of Rubisco due to decreased activity of carbonic anhydrase was ruled out as the photosynthesis effect was not prevented by elevated CO2 .


Assuntos
Dióxido de Carbono/metabolismo , Mimosa/metabolismo , Oxigênio/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Transpiração Vegetal/fisiologia , Anidrases Carbônicas/metabolismo , Respiração Celular/fisiologia , Clorofila/metabolismo , Escuridão , Eletricidade , Temperatura Alta , Luz , Mimosa/fisiologia , Mimosa/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Ribulose-Bifosfato Carboxilase/metabolismo , Água/fisiologia
11.
Sci Total Environ ; 934: 173122, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38734086

RESUMO

Similar to soils, tree stems emit and consume nitrous oxide (N2O) from the atmosphere. Although tree leaves dominate tree surface area, they have been completely excluded from field N2O flux measurements and therefore their role in forest N2O exchange remains unknown. We explored the contribution of leaf fluxes to forest N2O exchange. We determined the N2O exchange of mature European beech (Fagus sylvatica) stems and shoots (i.e., terminal branches) and of adjacent forest floor, in a typical temperate upland forest in Germany. The beech stems, and particularly the shoots, acted as net N2O sinks (-0.254 ± 0.827 µg N2O m-2 stem area h-1 and -4.54 ± 1.53 µg N2O m-2 leaf area h-1, respectively), while the forest floor was a net source (2.41 ± 1.08 µg N2O m-2 soil area h-1). The unstudied tree shoots were identified as a significant contributor to the net ecosystem N2O exchange. Moreover, we revealed for the first time that tree leaves act as substantial N2O sinks. Although this is the first study of its kind, it is of global importance for the proper design of future flux studies in forest ecosystems worldwide. Our results demonstrate that excluding tree leaves from forest N2O flux measurements can lead to misinterpretation of tree and forest N2O exchange, and thus global forest greenhouse gas flux inventories.


Assuntos
Poluentes Atmosféricos , Fagus , Óxido Nitroso , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Fagus/metabolismo , Alemanha , Poluentes Atmosféricos/análise , Florestas , Monitoramento Ambiental , Brotos de Planta/metabolismo , Folhas de Planta/metabolismo
12.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38214910

RESUMO

Stem respiration (RS) substantially contributes to the return of photo assimilated carbon to the atmosphere and, thus, to the tree and ecosystem carbon balance. Stem CO2 efflux (ECO2) is often used as a proxy for RS. However, this metric has often been challenged because of the uncertain origin of CO2 emitted from the stem due to post-respiratory processes. In this Insight, we (i) describe processes affecting the quantification of RS, (ii) review common methodological approaches to quantify and model RS and (iii) develop a research agenda to fill the most relevant knowledge gaps that we identified. Dissolution, transport and accumulation of respired CO2 away from its production site, reassimilation of respired CO2 via stem photosynthesis and the enzyme phosphoenolpyruvate carboxylase, axial CO2 diffusion in the gas phase, shifts in the respiratory substrate and non-respiratory oxygen (O2) consumption are the most relevant processes causing divergence between RS and measured stem gas exchange (ECO2 or O2 influx, IO2). Two common methodological approaches to estimate RS, namely the CO2 mass balance approach and the O2 consumption technique, circumvent some of these processes but have yielded inconsistent results regarding the fate of respired CO2. Stem respiration modelling has recently progressed at the organ and tree levels. However, its implementation in large-scale models, commonly operated from a source-driven perspective, is unlikely to reflect adequate mechanisms. Finally, we propose hypotheses and approaches to advance the knowledge of the stem carbon balance, the role of sap pH on RS, the reassimilation of respired CO2, RS upscaling procedures, large-scale RS modelling and shifts in respiratory metabolism during environmental stress.


Assuntos
Dióxido de Carbono , Árvores , Árvores/metabolismo , Dióxido de Carbono/metabolismo , Ecossistema , Transporte Biológico , Carbono/metabolismo , Caules de Planta/metabolismo
13.
New Phytol ; 199(2): 529-540, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23672230

RESUMO

Oaks (Quercus spp.), which are major forest trees in the northern hemisphere, host many biotic interactions, but molecular investigation of these interactions is limited by fragmentary genome data. To date, only 75 oak expressed sequence tags (ESTs) have been characterized in ectomycorrhizal (EM) symbioses. We synthesized seven beneficial and detrimental biotic interactions between microorganisms and animals and a clone (DF159) of Quercus robur. Sixteen 454 and eight Illumina cDNA libraries from leaves and roots were prepared and merged to establish a reference for RNA-Seq transcriptomic analysis of oak EMs with Piloderma croceum. Using the Mimicking Intelligent Read Assembly (MIRA) and Trinity assembler, the OakContigDF159.1 hybrid assembly, containing 65 712 contigs with a mean length of 1003 bp, was constructed, giving broad coverage of metabolic pathways. This allowed us to identify 3018 oak contigs that were differentially expressed in EMs, with genes encoding proline-rich cell wall proteins and ethylene signalling-related transcription factors showing up-regulation while auxin and defence-related genes were down-regulated. In addition to the first report of remorin expression in EMs, the extensive coverage provided by the study permitted detection of differential regulation within large gene families (nitrogen, phosphorus and sugar transporters, aquaporins). This might indicate specific mechanisms of genome regulation in oak EMs compared with other trees.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Micorrizas/fisiologia , Quercus/genética , Quercus/microbiologia , Simbiose/genética , Biota , Regulação para Baixo/genética , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência , Análise de Sequência de RNA , Transcriptoma/genética , Regulação para Cima/genética
14.
Tree Physiol ; 43(4): 522-538, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36413114

RESUMO

As climate change progresses, the frequency and duration of drought stress events are increasing. While the mechanisms of drought acclimation of trees has received considerable attention in recent years, the recovery processes remain critically understudied. We used a unique throughfall exclusion experiment in a mature temperate mixed forest consisting of the more isohydric Norway spruce and more anisohydric European beech, to study the recovery and resilience after drought release. We hypothesized that pre-dawn water potential (ΨPD) of both species will increase within 1 day after watering, while the recovery of stomatal conductance (gs) and the reversal of osmoregulation will be significantly delayed in the more isohydric spruce. Furthermore, we hypothesized that the xylem sap flow density (udaily) will not fully recover within the growing season due to the strong drought impact. After 5 years of summer drought, trees showed significantly reduced ΨPD, udaily and increased osmoregulation in leaves, but only isohydric spruce displayed increased leaf abscisic acid concentrations. In line with our hypothesis, ΨPD and gs recovered within 1 day in beech. Conversely, isohydric spruce showed delayed increases in ΨPD and gs. The delay in recovery of spruce was partially related to the replenishment of the stem water reservoir, as indicated by the missing response of udaily at the crown base compared with DBH level upon watering. However, udaily fully recovered only in the next growing season for beech and was still reduced in spruce. Nevertheless, in both species, osmotic acclimations of leaves were reversed within several weeks. While both species displayed full resilience to drought stress in water-related physiology, the recovery time was in several cases, e.g., udaily, ΨPD and gs, shorter for beech than for spruce. With future increases in the frequency of drought events under ongoing climate change, tree species that recover more quickly will be favored.


Assuntos
Fagus , Picea , Árvores/fisiologia , Fagus/fisiologia , Secas , Água/fisiologia , Estações do Ano , Picea/fisiologia
15.
New Phytol ; 191(1): 160-172, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21395596

RESUMO

• The CO(2) efflux of adult trees is supplied by recent photosynthates and carbon (C) stores. The extent to which these C pools contribute to growth and maintenance respiration (R(G) and R(M), respectively) remains obscure. • Recent photosynthates of adult beech (Fagus sylvatica) and spruce (Picea abies) trees were labeled by exposing whole-tree canopies to (13) C-depleted CO(2). Label was applied three times during the year (in spring, early summer and late summer) and changes in the stable C isotope composition (δ(13) C) of trunk and coarse-root CO(2) efflux were quantified. • Seasonal patterns in C translocation rate (CTR) and fractional contribution of label to CO(2) efflux (F(Label-Max)) were found. CTR was fastest during early summer. In beech, F(Label-Max) was lowest in spring and peaked in trunks during late summer (0.6 ± 0.1, mean ± SE), whereas no trend was observed in coarse roots. No seasonal dynamics in F(Label-Max) were found in spruce. • During spring, the R(G) of beech trunks was largely supplied by C stores. Recent photosynthates supplied growth in early summer and refilled C stores in late summer. In spruce, CO(2) efflux was constantly supplied by a mixture of stored (c. 75%) and recent (c. 25%) C. The hypothesis that R(G) is exclusively supplied by recent photosynthates was rejected for both species.


Assuntos
Dióxido de Carbono/metabolismo , Fagus/metabolismo , Picea/metabolismo , Estações do Ano , Isótopos de Carbono , Respiração Celular , Fotossíntese
16.
Plant Cell Environ ; 34(3): 363-73, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21054435

RESUMO

Respiration is a substantial driver of carbon (C) flux in forest ecosystems and stable C isotopes provide an excellent tool for its investigation. We studied seasonal dynamics in δ¹³C of CO2 efflux (δ¹³C(E)) from non-leafy branches, upper and lower trunks and coarse roots of adult trees, comparing deciduous Fagus sylvatica (European beech) with evergreen Picea abies (Norway spruce). In both species, we observed strong and similar seasonal dynamics in the δ¹³C(E) of above-ground plant components, whereas δ¹³C(E) of coarse roots was rather stable. During summer, δ¹³C(E) of trunks was about -28.2‰ (Beech) and -26.8‰ (Spruce). During winter dormancy, δ¹³C(E) increased by 5.6-9.1‰. The observed dynamics are likely related to a switch from growth to starch accumulation during fall and remobilization of starch, low TCA cycle activity and accumulation of malate by PEPc during winter. The seasonal δ¹³C(E) pattern of branches of Beech and upper trunks of Spruce was less variable, probably because these organs were additionally supplied by winter photosynthesis. In view of our results and pervious studies, we conclude that the pronounced increases in δ¹³C(E) of trunks during the winter results from interrupted access to recent photosynthates.


Assuntos
Dióxido de Carbono/análise , Fagus/metabolismo , Picea/metabolismo , Raízes de Plantas/metabolismo , Estações do Ano , Isótopos de Carbono/análise , Fagus/crescimento & desenvolvimento , Alemanha , Fotossíntese , Picea/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo
17.
Sci Rep ; 11(1): 23680, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880358

RESUMO

Endogenous rhythmic growth (ERG) is displayed by many tropical and some major temperate tree species and characterized by alternating root and shoot flushes (RF and SF). These flushes occur parallel to changes in biomass partitioning and in allocation of recently assimilated carbon and nitrogen. To address how biotic interactions interplay with ERG, we cross-compared the RF/SF shifts in oak microcuttings in the presence of pathogens, consumers and a mycorrhiza helper bacterium, without and with an ectomycorrhizal fungus (EMF), and present a synthesis of the observations. The typical increase in carbon allocation to sink leaves during SF did not occur in the presence of root or leaf pathogens, and the increase in nitrogen allocation to lateral roots during RF did not occur with the pathogens. The RF/SF shifts in resource allocation were mostly restored upon additional interaction with the EMF. Its presence led to increased resource allocation to principal roots during RF, also when the oaks were inoculated additionally with other interactors. The interactors affected the alternating, rhythmic growth and resource allocation shifts between shoots and roots. The restoring role of the EMF on RF/SF changes in parallel to the corresponding enhanced carbon and nitrogen allocation to sink tissues suggests that the EMF is supporting plants in maintaining the ERG.


Assuntos
Interações entre Hospedeiro e Microrganismos , Micorrizas/fisiologia , Quercus/microbiologia , Quercus/fisiologia , Simbiose , Biomassa , Especificidade de Órgãos , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais
18.
Front Plant Sci ; 11: 373, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411150

RESUMO

Vegetation responds to drought through a complex interplay of plant hydraulic mechanisms, posing challenges for model development and parameterization. We present a mathematical model that describes the dynamics of leaf water-potential over time while considering different strategies by which plant species regulate their water-potentials. The model has two parameters: the parameter λ describing the adjustment of the leaf water potential to changes in soil water potential, and the parameter Δψww describing the typical 'well-watered' leaf water potentials at non-stressed (near-zero) levels of soil water potential. Our model was tested and calibrated on 110 time-series datasets containing the leaf- and soil water potentials of 66 species under drought and non-drought conditions. Our model successfully reproduces the measured leaf water potentials over time based on three different regulation strategies under drought. We found that three parameter sets derived from the measurement data reproduced the dynamics of 53% of an drought dataset, and 52% of a control dataset [root mean square error (RMSE) < 0.5 MPa)]. We conclude that, instead of quantifying water-potential-regulation of different plant species by complex modeling approaches, a small set of parameters may be sufficient to describe the water potential regulation behavior for large-scale modeling. Thus, our approach paves the way for a parsimonious representation of the full spectrum of plant hydraulic responses to drought in dynamic vegetation models.

19.
Plant Cell Environ ; 32(4): 319-26, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19054346

RESUMO

Combining measurements of electric potential and pH with such of chlorophyll fluorescence and leaf gas exchange showed heat stimulation to evoke an electrical signal (propagation speed: 3-5 mm s(-1)) that travelled through the leaf while reducing the net CO(2) uptake rate and the photochemical quantum yield of both photosystems (PS). Two-dimensional imaging analysis of the chlorophyll fluorescence signal of PS II revealed that the yield reduction spread basipetally via the veins through the leaf at a speed of 1.6 +/- 0.3 mm s(-1) while the propagation speed in the intervein region was c. 50 times slower. Propagation of the signal through the veins was confirmed because PS I, which is present in the bundle sheath cells around the leaf vessels, was affected first. Hence, spreading of the signal along the veins represents a path with higher travelling speed than within the intervein region of the leaf lamina. Upon the electrical signal, cytoplasmic pH decreased transiently from 7.0 to 6.4, while apoplastic pH increased transiently from 4.5 to 5.2. Moreover, photochemical quantum yield of isolated chloroplasts was strongly affected by pH changes in the surrounding medium, indicating a putative direct influence of electrical signalling via changes of cytosolic pH on leaf photosynthesis.


Assuntos
Eletricidade , Temperatura Alta , Fotossíntese , Folhas de Planta/metabolismo , Zea mays/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Citoplasma/metabolismo , Fluorescência , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Transdução de Sinais
20.
Tree Physiol ; 29(11): 1349-65, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19734546

RESUMO

In this study, the effects of different light intensities either in direct sunlight or in the shade crown of adult beech (Fagus sylvatica L.) trees on delta13C and Delta18O were determined under ambient (1 x O3) and twice-ambient (2 x O3) atmospheric ozone concentrations during two consecutive years (2003 and 2004). We analysed the isotopic composition in leaf bulk, leaf cellulose, phloem and xylem material and related the results to (a) meteorological data (air temperature, T and relative humidity, RH), (b) leaf gas exchange measurements (stomatal conductance, g(s); transpiration rate, E; and maximum photosynthetic activity, A(max)) and (c) the outcome of a steady-state evaporative enrichment model. Delta13C was significantly lower in the shade than in the sun crown in all plant materials, whilst Delta18O was increased significantly in the shade than in the sun crown in bulk material and cellulose. Elevated ozone had no effect on delta13C, although Delta18O was influenced by ozone to varied degrees during single months. We observed significant seasonal changes for both parameters, especially in 2004, and also significant differences between the study years. Relating the findings to meteorological data and gas exchange parameters, we conclude that the differences in Delta18O between the sun and the shade crown were predominantly caused by the Péclet effect. This assumption was supported by the modelled Delta18O values for leaf cellulose. It was demonstrated that independent of RH, light-dependent reduction of stomatal conductance (and thus transpiration) and of A(max) can drive the pattern of Delta18O increase with the concomitant decrease of delta13C in the shade crown. The effect of doubling ozone levels on time-integrated stomatal conductance and transpiration as indicated by the combined analysis of Delta18O and delta13C was much lower than the influence caused by the light exposure.


Assuntos
Carbono/metabolismo , Fagus/metabolismo , Oxigênio/metabolismo , Ozônio/farmacologia , Isótopos de Carbono , Celulose/metabolismo , Fagus/efeitos dos fármacos , Fagus/efeitos da radiação , Umidade , Isótopos de Oxigênio , Floema/efeitos dos fármacos , Floema/metabolismo , Floema/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Estações do Ano , Luz Solar , Temperatura , Xilema/efeitos dos fármacos , Xilema/metabolismo , Xilema/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA