Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(6): 150, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024538

RESUMO

Grapevine (Vitis spp.) is one of the most cultivated fruit plants in the world. Vineyard growers apply copper-based products in these crops to prevent fungal diseases, generating worries about Cu contamination in soils and food. In this context, this study identifies prokaryotic communities associated with grapevine plants grown under different levels of Cu-contaminated soils. Moreover, the study isolates new bacteria to improve Cu resistance in plants. Soil Cu content correlated inversely with operational taxonomic units (OTUs) belonging to the groups Acidobacteria (SubGroup 2), Latescibacteria, Pedosphaeraceae, and Candidatus Udaeobacter. A total of 14 new bacterial isolates were obtained from copper-contaminated soils. These isolates produced Indolic Compounds (IC) in a range of 25 to 96 µg mL- 1, highlighting bacterial strains S20 and S26 as the highest producers. These new bacteria also produced siderophores, highlighting strains S19 and S26, which removed 58 and 59% of Fe ions from the CAS complex, respectively. From the in vitro antagonistic activity against Colletotrichum spp. strains, the authors identified some bacterial strains that inhibited phytopathogen growth. Bacterial strain Bacillus sp. S26 was chosen for inoculation experiments in grapevine plants. This bacterial isolate improved the growth of grapevine plants in Cu-contaminated soils. However, growth promotion did not occur in unstressed plants. More studies are necessary for developing a new bioinoculant containing S26 cells aiming to reduce biotic and abiotic stresses in grapevine.


Assuntos
Bacillus , Poluentes do Solo , Cobre/farmacologia , Bactérias , Solo , Plantas , Estresse Fisiológico , Poluentes do Solo/análise
2.
World J Microbiol Biotechnol ; 40(1): 5, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37925366

RESUMO

Feeding animals with lactobacilli strains is a biotechnological strategy to improve production, food quality, and animal health. Thus, this study aimed to select new lactic acid bacteria (LAB) able to improve laying hens health and egg production. Forty Bovans White layers (two days old) were randomly divided into four experimental groups that receive an oral gavage with saline solution (control group) or with one of the three lactobacilli selected (KEG3, TBB10, and KMG127) by their antagonistic activity against the foodborne pathogen Bacillus cereus GGD_EGG01. 16 S rRNA sequencing identified KEG3 as Lentilactobacillus sp., and TBB10 and KMG127 as Lactiplantibacillus sp. The data showed that feeding birds with LAB increased weight uniformity and improved the internal quality of the eggs (high yolk index and Haugh unit) compared with the control group (p < 0.05). Beta-diversity analysis showed that LAB supplementation modifies the cecal microbiota of laying hens. The prokaryotic families Bacteroidaceae, Ruminococcaceae, Rikenellaceae, and Lactobacillaceae were most important to the total dissimilarity of the cecal microbial community (calculated by SIMPER test). At end of in vivo experiments, it was possible to conclude that the feed of laying hens with Lentilactobacillus sp. TBB10 and Lentilactobacillus sp. KEG3 can be an important biotechnological tool for improving food quality and animal health.


Assuntos
Dieta , Lactobacillales , Animais , Feminino , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Galinhas/microbiologia , Dieta/veterinária , Suplementos Nutricionais , Lactobacillales/genética , Lactobacillus
3.
Front Plant Sci ; 11: 590774, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362817

RESUMO

Rock powders are low-cost potential sources of most of the nutrients required by higher plants for growth and development. However, slow dissolution rates of minerals represent an obstacle to the widespread use of rock powders in agriculture. Rhizosphere processes and biological weathering may further enhance mineral dissolution since the interaction between minerals, plants, and bacteria results in the release of macro- and micronutrients into the soil solution. Plants are important agents in this process acting directly in the mineral dissolution or sustaining a wide diversity of weathering microorganisms in the root environment. Meanwhile, root microorganisms promote mineral dissolution by producing complexing ligands (siderophores and organic acids), affecting the pH (via organic or inorganic acid production), or performing redox reactions. Besides that, a wide variety of rhizosphere bacteria and fungi could also promote plant development directly, synergistically contributing to the weathering activity performed by plants. The inoculation of weathering bacteria in soil or plants, especially combined with the use of crushed rocks, can increase soil fertility and improve crop production. This approach is more sustainable than conventional fertilization practices, which may contribute to reducing climate change linked to agricultural activity. Besides, it could decrease the dependency of developing countries on imported fertilizers, thus improving local development.

5.
3 Biotech ; 8(11): 451, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30333953

RESUMO

In this study, we isolated Lactobacillus spp. from bovine raw milk and artisanal cheese from southern Brazil, and evaluated their technological and probiotic potential to select new isolates for producing healthy fermented dairy foods with differentiated tastes and flavours. We obtained 48 new lactobacilli isolates, which were isolated from raw milk (38) and cheese (10). These bacterial isolates were closely related with ten species: Lactobacillus paracasei (50% of the isolates), L. parabuchneri (15%), L. pentosus (13%), L. zeae (4%), L. plantarum (4%), L. otakiensis (4%), L. casei (4%), L. harbinensis (2%), L. diolivorans (2%), and L. rhamnosus (2%). Isolates CH112 and CH131 showed the greatest acidification potential, reducing the pH of milk to below 5.3 after incubation for 6 h at 32 °C. Considering proteolytic activity and diacetyl production, isolates ML88a, ML04, and ML12 showed the most promising results. Isolate ML12 showed 100% survival rate when inoculated in gastric juice at pH 2.5. The evaluation of antibacterial activity of the lactobacilli showed that the pathogens Listeria monocytogenes, Staphylococcus aureus, Salmonella enteritidis, and Salmonella Typhimurium were strongly inhibited by the pure lactobacilli cultures. Five Lactobacillus isolates (ML01, ML04, ML12, ML88, and CH139) showed both technological and probiotic characteristics. Principal Component Analysis (PCA) was used to investigate correlations among technological and probiotic characteristics, and identified new promising lactobacilli isolates for exploring their characteristics. This study reveals the importance of selecting new microorganisms with potential applicability in the food industry for developing functional foods with differentiated aromas and flavours.

7.
Ciênc. rural ; 38(3): 658-664, maio-jun. 2008. ilus, tab
Artigo em Português | LILACS | ID: lil-480174

RESUMO

Os rizóbios, conhecidos por sua capacidade de fixar N2 em associação com leguminosas, também se mostram capazes de promover o crescimento de não-leguminosas, especialmente pela produção de ácido indol-acético (AIA). Neste trabalho, objetivou-se selecionar rizóbios produtores de AIA e avaliar o efeito de diferentes concentrações deste fitormônio sobre a germinação e o desenvolvimento inicial de plântulas de alface. Foram selecionados quatro isolados de Bradyrhizobium sp. e um isolado de Rhizobium leguminosarum biovar trifolii, os quais foram crescidos por quatro dias em meio levedura-manitol enriquecido com triptofano. Após esse período, avaliou-se a produção de AIA e procedeu-se à inoculação de sementes de alface com os isolados. O isolado TV-13, de R. leguminosarum biovar trifolii produziu 171,1µg mL-1 de AIA, causando prejuízos para o desenvolvimento das plântulas de alface. Por outro lado, os isolados de Bradyrhizobium sp. produziram entre 1,2 e 3,3µg mL-1 de AIA e aumentaram o vigor das plântulas em relação ao tratamento sem inoculação com rizóbios. Para verificar se essas diferenças foram decorrentes das concentrações de AIA, foram realizados mais dois experimentos, nos quais as sementes foram embebidas em culturas de TV-13 com ou sem a presença de triptofano ou em doses crescentes de AIA sintético. O isolado TV-13 crescido na presença de triptofano causou danos progressivos sobre o desenvolvimento das plântulas de alface, o que não ocorreu na ausência de triptofano. Também foi verificado um retardo na germinação das sementes quando submetidas a altas concentrações de AIA sintético. Os resultados indicam a influência do AIA sobre os parâmetros de germinação, de modo que a inoculação de sementes de alface com rizóbios que produzem baixas quantidades de AIA é uma prática recomendável.


Rhizobia are known by their ability to fix nitrogen in symbiosis with legumes, but they are also capable of promote the growth of non-legume, mainly due to indoleacetic acid production (IAA). In this research, it was aimed to select rhizobia producers of IAA and evaluate the effect of different levels of this hormone over the germination and initial development of lettuce seedlings. Four isolates of Bradyrhizobiumsp. and one isolate of Rhizobium leguminosarum biovar trifolii were grown during four days in yeast manitol medium enriched with tryptophan. After that period, the production of IAA was evaluated and the isolates were inoculated in lettuce seeds. The isolate TV-13, of R. leguminosarum biovar trifolii, produced 171.1µg mL-1 of IAA, causing damages to lettuce seedlings. On other hand, Bradyrhizobium sp. isolates produced between 1.2 and 3.3µg mL-1 of IAA and improved seedlings vigor. In order to verify if these results were due to IAA concentrations, other two assays were carried out, in which lettuce seeds were imbibed in TV-13 cultures with or without tryptophan or in increasing dosages of synthetic IAA. The isolate TV-13 grown in the presence of tryptophan caused progressive damages to lettuce seedlings development, fact that did not occur in the absence of tryptophan. It was also verified a delay in germination of seeds exposed to high levels of synthetic IAA. The results show the influence of IAA on germination parameters, so that the inoculation of lettuce seeds with rhizobia that produce low amounts of IAA is a recommended practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA