Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 53(5): 726-37, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24560927

RESUMO

Mitochondrial calcium accumulation was recently shown to depend on a complex composed of an inner-membrane channel (MCU and MCUb) and regulatory subunits (MICU1, MCUR1, and EMRE). A fundamental property of MCU is low activity at resting cytosolic Ca(2+) concentrations, preventing deleterious Ca(2+) cycling and organelle overload. Here we demonstrate that these properties are ensured by a regulatory heterodimer composed of two proteins with opposite effects, MICU1 and MICU2, which, both in purified lipid bilayers and in intact cells, stimulate and inhibit MCU activity, respectively. Both MICU1 and MICU2 are regulated by calcium through their EF-hand domains, thus accounting for the sigmoidal response of MCU to [Ca(2+)] in situ and allowing tight physiological control. At low [Ca(2+)], the dominant effect of MICU2 largely shuts down MCU activity; at higher [Ca(2+)], the stimulatory effect of MICU1 allows the prompt response of mitochondria to Ca(2+) signals generated in the cytoplasm.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Equorina/química , Cálcio/química , Citoplasma/metabolismo , Citosol/metabolismo , Dimerização , Dissulfetos , Eletrofisiologia/métodos , Inativação Gênica , Células HeLa , Humanos , Imuno-Histoquímica , Bicamadas Lipídicas/química , Mitocôndrias/metabolismo , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
2.
EMBO Rep ; 17(9): 1264-80, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27402544

RESUMO

Several stimuli induce programmed cell death by increasing Ca(2+) transfer from the endoplasmic reticulum (ER) to mitochondria. Perturbation of this process has a special relevance in pathologies as cancer and neurodegenerative disorders. Mitochondrial Ca(2+) uptake mainly takes place in correspondence of mitochondria-associated ER membranes (MAM), specialized contact sites between the two organelles. Here, we show the important role of FATE1, a cancer-testis antigen, in the regulation of ER-mitochondria distance and Ca(2+) uptake by mitochondria. FATE1 is localized at the interface between ER and mitochondria, fractionating into MAM FATE1 expression in adrenocortical carcinoma (ACC) cells under the control of the transcription factor SF-1 decreases ER-mitochondria contact and mitochondrial Ca(2+) uptake, while its knockdown has an opposite effect. FATE1 also decreases sensitivity to mitochondrial Ca(2+)-dependent pro-apoptotic stimuli and to the chemotherapeutic drug mitotane. In patients with ACC, FATE1 expression in their tumor is inversely correlated with their overall survival. These results show that the ER-mitochondria uncoupling activity of FATE1 is harnessed by cancer cells to escape apoptotic death and resist the action of chemotherapeutic drugs.


Assuntos
Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/metabolismo , Carcinoma Adrenocortical/mortalidade , Antineoplásicos Hormonais/farmacologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/ultraestrutura , Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Mitotano/farmacologia , Prognóstico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Esteroides/farmacologia , Fatores de Transcrição/química , Fatores de Transcrição/genética
3.
Adv Exp Med Biol ; 982: 25-47, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28551780

RESUMO

Calcium (Ca2+) accumulation inside mitochondria represents a pleiotropic signal controlling a wide range of cellular functions, including key metabolic pathways and life/death decisions. This phenomenon has been first described in the 1960s, but the identity of the molecules controlling this process remained a mystery until just few years ago, when both mitochondrial Ca2+ uptake and release systems were genetically dissected. This finally opened the possibility to develop genetic models to directly test the contribution of mitochondrial Ca2+ homeostasis to cellular functions. Here we summarize our current understanding of the molecular machinery that controls mitochondrial Ca2+ handling and critically evaluate the physiopathological role of mitochondrial Ca2+ signaling, based on recent evidences obtained through in vitro and in vivo models.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Animais , Morte Celular , Doença , Metabolismo Energético , Homeostase , Humanos , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Doenças Mitocondriais/fisiopatologia , Fatores de Tempo
4.
J Biol Chem ; 288(15): 10750-8, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23400777

RESUMO

The direct measurement of mitochondrial [Ca(2+)] with highly specific probes demonstrated that major swings in organellar [Ca(2+)] parallel the changes occurring in the cytosol and regulate processes as diverse as aerobic metabolism and cell death by necrosis and apoptosis. Despite great biological relevance, insight was limited by the complete lack of molecular understanding. The situation has changed, and new perspectives have emerged following the very recent identification of the mitochondrial Ca(2+) uniporter, the channel allowing rapid Ca(2+) accumulation across the inner mitochondrial membrane.


Assuntos
Apoptose/fisiologia , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Canais de Cálcio/genética , Humanos , Mitocôndrias/genética , Necrose
5.
Autophagy ; 17(12): 4029-4042, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33749521

RESUMO

ALS (amyotrophic lateral sclerosis), the most common motor neuron disease, causes muscle denervation and rapidly fatal paralysis. While motor neurons are the most affected cells in ALS, studies on the pathophysiology of the disease have highlighted the importance of non-cell autonomous mechanisms, which implicate astrocytes and other glial cells. In ALS, subsets of reactive astrocytes lose their physiological functions and become toxic for motor neurons, thereby contributing to disease pathogenesis. Evidence of astrocyte contribution to disease pathogenesis are well established in cellular and animal models of familial ALS linked to mutant SOD1, where astrocytes promote motor neuron cell death. The mechanism underlying astrocytes reactivity in conditions of CNS injury have been shown to involve the MTOR pathway. However, the role of this conserved metabolic signaling pathway, and the potential therapeutic effects of its modulation, have not been investigated in ALS astrocytes. Here, we show elevated activation of the MTOR pathway in human-derived astrocytes harboring mutant SOD1, which results in inhibition of macroautophagy/autophagy, increased cell proliferation, and enhanced astrocyte reactivity. We demonstrate that MTOR pathway activation in mutant SOD1 astrocytes is due to post-transcriptional upregulation of the IGF1R (insulin like growth factor 1 receptor), an upstream positive modulator of the MTOR pathway. Importantly, inhibition of the IGF1R-MTOR pathway decreases cell proliferation and reactivity of mutant SOD1 astrocytes, and attenuates their toxicity to motor neurons. These results suggest that modulation of astrocytic IGF1R-MTOR pathway could be a viable therapeutic strategy in SOD1 ALS and potentially other neurological diseases.Abbreviations: ACM: astrocyte conditioned medium; AKT: AKT serine/threonine kinase; ALS: amyotrophic lateral sclerosis; BrdU: thymidine analog 5-bromo-2'-deoxyuridine; CNS: central nervous system; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; GFAP: glial fibrillary acidic protein; IGF1R: insulin like growth factor 1 receptor; INSR: insulin receptor; iPSA: iPSC-derived astrocytes; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta;MTOR: mechanistic target of rapamycin kinase; NES: nestin; PPK1: 3-phosphoinositide dependent protein kinase 1; PI: propidium iodide; PPP: picropodophyllotoxin; PTEN: phosphatase and tensin homolog; S100B/S100ß: S100 calcium binding protein B; SLC1A3/ EAAT1: solute carrier family 1 member 3; SMI-32: antibody to nonphosphorylated NEFH; SOD1: superoxide dismutase 1; TUBB3: tubulin beta 3 class III; ULK1: unc-51 like autophagy activating kinase 1.


Assuntos
Esclerose Lateral Amiotrófica , Astrócitos , Esclerose Lateral Amiotrófica/metabolismo , Animais , Astrócitos/metabolismo , Autofagia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Serina-Treonina Quinases TOR/metabolismo
6.
Biology (Basel) ; 8(2)2019 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-31083575

RESUMO

Neurons are high-energy consuming cells, heavily dependent on mitochondria for ATP generation and calcium buffering. These mitochondrial functions are particularly critical at specific cellular sites, where ionic currents impose a large energetic burden, such as at synapses. The highly polarized nature of neurons, with extremely large axoplasm relative to the cell body, requires mitochondria to be efficiently transported along microtubules to reach distant sites. Furthermore, neurons are post-mitotic cells that need to maintain pools of healthy mitochondria throughout their lifespan. Hence, mitochondrial transport and turnover are essential processes for neuronal survival and function. In neurodegenerative diseases, the maintenance of a healthy mitochondrial network is often compromised. Numerous lines of evidence indicate that mitochondrial impairment contributes to neuronal demise in a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), where degeneration of motor neurons causes a fatal muscle paralysis. Dysfunctional mitochondria accumulate in motor neurons affected by genetic or sporadic forms of ALS, strongly suggesting that the inability to maintain a healthy pool of mitochondria plays a pathophysiological role in the disease. This article critically reviews current hypotheses on mitochondrial involvement in the pathogenesis of ALS, focusing on the alterations of mitochondrial axonal transport and turnover in motor neurons.

7.
Life Sci Alliance ; 2(5)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658977

RESUMO

We report a signaling pathway linking two fundamental functions of the ER, oxidative protein folding, and intracellular calcium regulation. Cells sense ER oxidative protein folding through H2O2, which induces Nrf2 nuclear translocation. Nrf2 regulates the expression of GPx8, an ER glutathione peroxidase that modulates ER calcium levels. Because ER protein folding is dependent on calcium, this pathway functions as rheostat of ER calcium levels. Protein misfolding and calcium dysregulation contribute to the pathophysiology of many diseases, including amyotrophic lateral sclerosis, in which astrocytic calcium dysregulation participates in causing motor neuron death. In human-derived astrocytes harboring mutant SOD1 causative of familial amyotrophic lateral sclerosis, we show that impaired ER redox signaling decreases Nrf2 nuclear translocation, resulting in ER calcium overload and increased calcium-dependent cell secretion, leading to motor neuron death. Nrf2 activation in SOD1 mutant astrocytes with dimethyl fumarate restores calcium homeostasis and ameliorates motor neuron death. These results highlight a regulatory mechanism of intracellular calcium homeostasis by ER redox signaling and suggest that this mechanism could be a therapeutic target in SOD1 mutant astrocytes.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Peróxido de Hidrogênio/farmacologia , Neurônios Motores/citologia , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Estresse do Retículo Endoplasmático , Células HeLa , Homeostase , Humanos , Camundongos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Peroxidases/metabolismo
8.
Oxid Med Cell Longev ; 2019: 1681254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737163

RESUMO

Neurodegenerative diseases are a large and heterogeneous group of disorders characterized by selective and progressive death of specific neuronal subtypes. In most of the cases, the pathophysiology is still poorly understood, although a number of hypotheses have been proposed. Among these, dysregulation of Ca2+ homeostasis and mitochondrial dysfunction represent two broadly recognized early events associated with neurodegeneration. However, a direct link between these two hypotheses can be drawn. Mitochondria actively participate to global Ca2+ signaling, and increases of [Ca2+] inside organelle matrix are known to sustain energy production to modulate apoptosis and remodel cytosolic Ca2+ waves. Most importantly, while mitochondrial Ca2+ overload has been proposed as the no-return signal, triggering apoptotic or necrotic neuronal death, until now direct evidences supporting this hypothesis, especially in vivo, are limited. Here, we took advantage of the identification of the mitochondrial Ca2+ uniporter (MCU) and tested whether mitochondrial Ca2+ signaling controls neuronal cell fate. We overexpressed MCU both in vitro, in mouse primary cortical neurons, and in vivo, through stereotaxic injection of MCU-coding adenoviral particles in the brain cortex. We first measured mitochondrial Ca2+ uptake using quantitative genetically encoded Ca2+ probes, and we observed that the overexpression of MCU causes a dramatic increase of mitochondrial Ca2+ uptake both at resting and after membrane depolarization. MCU-mediated mitochondrial Ca2+ overload causes alteration of organelle morphology and dysregulation of global Ca2+ homeostasis. Most importantly, MCU overexpression in vivo is sufficient to trigger gliosis and neuronal loss. Overall, we demonstrated that mitochondrial Ca2+ overload is per se sufficient to cause neuronal cell death both in vitro and in vivo, thus highlighting a potential key step in neurodegeneration.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Córtex Cerebelar/fisiologia , Gliose/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/fisiologia , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Canais de Cálcio/genética , Sinalização do Cálcio , Morte Celular , Córtex Cerebelar/patologia , Vetores Genéticos , Gliose/genética , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Doenças Neurodegenerativas/patologia , Regulação para Cima
9.
Cell Death Differ ; 26(1): 179-195, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29725115

RESUMO

The versatility and universality of Ca2+ as intracellular messenger is guaranteed by the compartmentalization of changes in [Ca2+]. In this context, mitochondrial Ca2+ plays a central role, by regulating both specific organelle functions and global cellular events. This versatility is also guaranteed by a cell type-specific Ca2+ signaling toolkit controlling specific cellular functions. Accordingly, mitochondrial Ca2+ uptake is mediated by a multimolecular structure, the MCU complex, which differs among various tissues. Its activity is indeed controlled by different components that cooperate to modulate specific channeling properties. We here investigate the role of MICU3, an EF-hand containing protein expressed at high levels, especially in brain. We show that MICU3 forms a disulfide bond-mediated dimer with MICU1, but not with MICU2, and it acts as enhancer of MCU-dependent mitochondrial Ca2+ uptake. Silencing of MICU3 in primary cortical neurons impairs Ca2+ signals elicited by synaptic activity, thus suggesting a specific role in regulating neuronal function.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Multimerização Proteica
10.
EMBO Mol Med ; 10(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30126943

RESUMO

Mutant Cu/Zn superoxide dismutase (SOD1) causes mitochondrial alterations that contribute to motor neuron demise in amyotrophic lateral sclerosis (ALS). When mitochondria are damaged, cells activate mitochondria quality control (MQC) mechanisms leading to mitophagy. Here, we show that in the spinal cord of G93A mutant SOD1 transgenic mice (SOD1-G93A mice), the autophagy receptor p62 is recruited to mitochondria and mitophagy is activated. Furthermore, the mitochondrial ubiquitin ligase Parkin and mitochondrial dynamics proteins, such as Miro1, and Mfn2, which are ubiquitinated by Parkin, and the mitochondrial biogenesis regulator PGC1α are depleted. Unexpectedly, Parkin genetic ablation delays disease progression and prolongs survival in SOD1-G93A mice, as it slows down motor neuron loss and muscle denervation and attenuates the depletion of mitochondrial dynamics proteins and PGC1α. Our results indicate that Parkin is a disease modifier in ALS, because chronic Parkin-mediated MQC activation depletes mitochondrial dynamics-related proteins, inhibits mitochondrial biogenesis, and worsens mitochondrial dysfunction.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Superóxido Dismutase-1/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ubiquitina-Proteína Ligases/genética
11.
Sci Rep ; 7(1): 6283, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740219

RESUMO

p66shc is a growth factor adaptor protein that contributes to mitochondrial ROS production. p66shc is involved in insulin signaling and its deletion exerts a protective effect against diet-induced obesity. In light of the role of skeletal muscle activity in the control of systemic metabolism and obesity, we investigated which is the contribution of p66shc in regulating muscle structure and function. Here, we show that p66shc-/- muscles are undistinguishable from controls in terms of size, resistance to denervation-induced atrophy, and force. However, p66shc-/- mice perform slightly better than wild type animals during repetitive downhill running. Analysis of the effects after placing mice on a high fat diet (HFD) regimen demonstrated that running distance is greatly reduced in obese wild type animals, but not in overweight-resistant p66shc-/- mice. In addition, muscle force measured after exercise decreases upon HFD in wild type mice while p66shc-/- animals are protected. Our data indicate that p66shc affect the response to damage of adult muscle in chow diet, and it determines the maintenance of muscle force and exercise performance upon a HFD regimen.


Assuntos
Trifosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Condicionamento Físico Animal , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/fisiologia , Animais , Metabolismo Energético , Tolerância ao Exercício , Feminino , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Cold Spring Harb Protoc ; 2014(1): 9-16, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24371311

RESUMO

Ca(2+)-sensitive photoproteins are ideal agents for measuring the Ca(2+) concentration ([Ca(2+)]) in intracellular organelles because they can be modified to include specific targeting sequences. Aequorin was the first Ca(2+)-sensitive photoprotein probe used to measure the [Ca(2+)] inside specific intracellular organelles in intact cells. Aequorin is a 22-kDa protein produced by the jellyfish Aequorea victoria. On the binding of Ca(2+) to three high-affinity sites in aequorin, an irreversible reaction occurs in which the prosthetic group is released and a photon is emitted. Aequorin has become widely used for intracellular Ca(2+) measurements because it offers many advantages: For example, it can be targeted with precision, functions over a wide range of [Ca(2+)], and shows low buffering capacity. In this article we describe the main characteristics of the aequorin probe and review the reasons why it is widely used to measure intracellular [Ca(2+)].


Assuntos
Equorina , Cálcio/análise , Equorina/isolamento & purificação , Animais , Citosol/química , Hidrozoários , Organelas/química , Fótons , Ligação Proteica
13.
Cold Spring Harb Protoc ; 2014(1): 86-93, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24371314

RESUMO

Aequorin is a Ca(2+)-sensitive photoprotein isolated from the jellyfish Aequorea victoria. It is an ideal probe for measuring Ca(2+) concentration ([Ca(2+)]) in intracellular organelles because it can be modified to include specific targeting sequences. On the binding of Ca(2+) to three high-affinity sites in aequorin, an irreversible reaction occurs in which the prosthetic group coelenterazine is released and a photon is emitted. This protocol presents procedures for expressing, targeting, and reconstituting aequorin in intact and permeabilized mammalian cells and describes how to use this photoprotein to measure intracellular [Ca(2+)] in various subcellular compartments.


Assuntos
Equorina , Cálcio/análise , Organelas/química , Equorina/isolamento & purificação , Animais , Expressão Gênica , Hidrozoários , Imidazóis/metabolismo , Fótons , Ligação Proteica , Transporte Proteico , Pirazinas/metabolismo , Proteínas Recombinantes
14.
Biofactors ; 37(3): 219-27, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21674643

RESUMO

Mitochondrial Ca(2+) homeostasis is an important component of the calcium-mediated cellular response to extracellular stimuli. It controls key organelle functions, such as aerobic metabolism and the induction of apoptotic cell death, and shapes the spatiotemporal pattern of the cytosolic [Ca(2+)] increase. We here summarize both the main roles of Ca(2+) signals within mitochondria and the emerging molecular information that is starting to unravel the composition of the signaling apparatus and reveal potential pharmacological targets in this process of utmost pathophysiological relevance.


Assuntos
Sinalização do Cálcio/fisiologia , Mitocôndrias/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Sinalização do Cálcio/genética , Retículo Endoplasmático/metabolismo , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA