Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
2.
Proc Natl Acad Sci U S A ; 116(34): 16981-16986, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31383760

RESUMO

To repurpose compounds for diffuse large B cell lymphoma (DLBCL), we screened a library of drugs and other targeted compounds approved by the US Food and Drug Administration on 9 cell lines and validated the results on a panel of 32 genetically characterized DLBCL cell lines. Dasatinib, a multikinase inhibitor, was effective against 50% of DLBCL cell lines, as well as against in vivo xenografts. Dasatinib was more broadly active than the Bruton kinase inhibitor ibrutinib and overcame ibrutinib resistance. Tumors exhibiting dasatinib resistance were commonly characterized by activation of the PI3K pathway and loss of PTEN expression as a specific biomarker. PI3K suppression by mTORC2 inhibition synergized with dasatinib and abolished resistance in vitro and in vivo. These results provide a proof of concept for the repurposing approach in DLBCL, and point to dasatinib as an attractive strategy for further clinical development in lymphomas.


Assuntos
Dasatinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linfoma Difuso de Grandes Células B , Adenina/análogos & derivados , Animais , Linhagem Celular Tumoral , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Piperidinas , Estudo de Prova de Conceito , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Sci ; 106(4): 421-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25611295

RESUMO

The MYC transcription factor plays a crucial role in the regulation of cell cycle progression, apoptosis, angiogenesis, and cellular transformation. Due to its oncogenic activities and overexpression in a majority of human cancers, it is an interesting target for novel drug therapies. MYC binding to the E-box (5'-CACGTGT-3') sequence at gene promoters contributes to more than 4000 MYC-dependent transcripts. Owing to its importance in MYC regulation, we designed a novel sequence-specific DNA-binding pyrrole-imidazole (PI) polyamide, Myc-5, that recognizes the E-box consensus sequence. Bioinformatics analysis revealed that the Myc-5 binding sequence appeared in 5'- MYC binding E-box sequences at the eIF4G1, CCND1, and CDK4 gene promoters. Furthermore, ChIP coupled with detection by quantitative PCR indicated that Myc-5 has the ability to inhibit MYC binding at the target gene promoters and thus cause downregulation at the mRNA level and protein expression of its target genes in human Burkitt's lymphoma model cell line, P493.6, carrying an inducible MYC repression system and the K562 (human chronic myelogenous leukemia) cell line. Single i.v. injection of Myc-5 at 7.5 mg/kg dose caused significant tumor growth inhibition in a MYC-dependent tumor xenograft model without evidence of toxicity. We report here a compelling rationale for the identification of a PI polyamide that inhibits a part of E-box-mediated MYC downstream gene expression and is a model for showing that phenotype-associated MYC downstream gene targets consequently inhibit MYC-dependent tumor growth.


Assuntos
Linfoma de Burkitt/genética , Elementos E-Box/efeitos dos fármacos , Imidazóis/química , Nylons/química , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Pirróis/química , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Quinase 4 Dependente de Ciclina/genética , Proteínas de Ligação a DNA , Elementos E-Box/genética , Fator de Iniciação Eucariótico 4G/genética , Humanos , Camundongos , Camundongos SCID , Nylons/síntese química , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Proc Natl Acad Sci U S A ; 109(24): 9545-50, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22623531

RESUMO

MYC oncogene family members are broadly implicated in human cancers, yet are considered "undruggable" as they encode transcription factors. MYC also carries out essential functions in proliferative tissues, suggesting that its inhibition could cause severe side effects. We elected to identify synthetic lethal interactions with c-MYC overexpression (MYC-SL) in a collection of ~3,300 druggable genes, using high-throughput siRNA screening. Of 49 genes selected for follow-up, 48 were confirmed by independent retesting and approximately one-third selectively induced accumulation of DNA damage, consistent with enrichment in DNA-repair genes by functional annotation. In addition, genes involved in histone acetylation and transcriptional elongation, such as TRRAP and BRD4, were identified, indicating that the screen revealed known MYC-associated pathways. For in vivo validation we selected CSNK1e, a kinase whose expression correlated with MYCN amplification in neuroblastoma (an established MYC-driven cancer). Using RNAi and available small-molecule inhibitors, we confirmed that inhibition of CSNK1e halted growth of MYCN-amplified neuroblastoma xenografts. CSNK1e had previously been implicated in the regulation of developmental pathways and circadian rhythms, whereas our data provide a previously unknown link with oncogenic MYC. Furthermore, expression of CSNK1e correlated with c-MYC and its transcriptional signature in other human cancers, indicating potential broad therapeutic implications of targeting CSNK1e function. In summary, through a functional genomics approach, pathways essential in the context of oncogenic MYC but not to normal cells were identified, thus revealing a rich therapeutic space linked to a previously "undruggable" oncogene.


Assuntos
Genes myc , Genômica , Neoplasias/tratamento farmacológico , Caseína Quinase 1 épsilon/metabolismo , Humanos , Neoplasias/genética , RNA Interferente Pequeno
5.
Nature ; 448(7152): 445-51, 2007 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-17597761

RESUMO

The c-Myc proto-oncogene encodes a transcription factor that is essential for cell growth and proliferation and is broadly implicated in tumorigenesis. However, the biological functions required by c-Myc to induce oncogenesis remain elusive. Here we show that c-Myc has a direct role in the control of DNA replication. c-Myc interacts with the pre-replicative complex and localizes to early sites of DNA synthesis. Depletion of c-Myc from mammalian (human and mouse) cells as well as from Xenopus cell-free extracts, which are devoid of RNA transcription, demonstrates a non-transcriptional role for c-Myc in the initiation of DNA replication. Overexpression of c-Myc causes increased replication origin activity with subsequent DNA damage and checkpoint activation. These findings identify a critical function of c-Myc in DNA replication and suggest a novel mechanism for its normal and oncogenic functions.


Assuntos
Replicação do DNA/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Origem de Replicação/genética , Animais , Extratos Celulares , Transformação Celular Neoplásica , Células Cultivadas , Dano ao DNA/genética , Fibroblastos , Células HeLa , Humanos , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/deficiência , Proteínas Proto-Oncogênicas c-myc/genética , Transcrição Gênica , Xenopus
6.
Front Oncol ; 13: 1267650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239650

RESUMO

Patients presenting with stage 4 ovarian carcinoma, including low-grade serous disease, have a poor prognosis. Although platinum-based therapies can offer some response, these therapies are associated with many side effects, and treatment resistance often develops. Toxic side effects along with disease progression render patients unable to receive additional lines of treatment and limit their options to hospice or palliative care. In this case report, we describe a patient with an unusual case of metastatic low-grade serous ovarian cancer with some features of high-grade disease who had received four previous lines of treatment and was suffering from atelectasis, pulmonary embolism, and hydronephrosis. A CLIA-certified drug sensitivity assay of an organoid culture derived from the patient's tumor (PARIS® test) identified several therapeutic options, including the combination of fulvestrant with everolimus. On this treatment regimen, the patient experienced 7 months of stable disease and survived nearly 11 months before succumbing to her disease. This case emphasizes the clinical utility of ex vivo drug testing as a new functional precision medicine approach to identify, in real-time, personalized treatment options for patients, especially those who are not benefiting from standard of care treatments.

7.
NPJ Precis Oncol ; 7(1): 45, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202426

RESUMO

Low-grade serous ovarian cancer (LGSOC) typically responds poorly to standard platinum-based chemotherapy and new therapeutic approaches are needed. We describe a remarkable response to targeted therapy in a patient with platinum-resistant, advanced LGSOC who had failed standard-of-care chemotherapy and two surgeries. The patient was in rapid decline and entering hospice care on home intravenous (i.v.) opioid analgesics and a malignant bowel obstruction requiring a G-tube. Genomic analysis of the patient's tumor did not indicate obvious therapeutic options. In contrast, a CLIA-certified drug sensitivity assay of an organoid culture derived from the patient's tumor identified several therapeutic choices, including Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, as well as the EGFR inhibitors afatinib and erlotinib. Following off-label administration of daily ibrutinib as monotherapy, the patient had an exceptional clinical turnaround over the following 65 weeks with normalization of CA-125 levels, resolution of the malignant bowel obstruction, halting of pain medications, and improvement of performance status from ECOG 3 to ECOG 1. After 65 weeks of stable disease, the patient's CA-125 levels began to rise, at which point the patient discontinued ibrutinib and began taking afatinib as monotherapy. The patient's CA-125 levels remained stable for an additional 38 weeks but due to anemia and rising CA-125 levels, the patient switched to erlotinib and is currently being monitored. This case highlights the clinical utility of ex vivo drug testing of patient-derived tumor organoids as a new functional precision medicine approach to identify effective personalized therapies for patients who have failed standard-of-care treatments.

8.
Nat Cell Biol ; 7(3): 311-8, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15723054

RESUMO

c-Myc coordinates cell growth and division through a transcriptional programme that involves both RNA polymerase (Pol) II- and Pol III-transcribed genes. Here, we demonstrate that human c-Myc also directly enhances Pol I transcription of ribosomal RNA (rRNA) genes. rRNA synthesis and accumulation occurs rapidly following activation of a conditional MYC-ER allele (coding for a Myc-oestrogen-receptor fusion protein), is resistant to inhibition of Pol II transcription and is markedly reduced by c-MYC RNA interference. Furthermore, by using combined immunofluorescence and rRNA-FISH, we have detected endogenous c-Myc in nucleoli at sites of active ribosomal DNA (rDNA) transcription. Our data also show that c-Myc binds to specific consensus elements located in human rDNA and associates with the Pol I-specific factor SL1. The presence of c-Myc at specific sites on rDNA coincides with the recruitment of SL1 to the rDNA promoter and with increased histone acetylation. We propose that stimulation of rRNA synthesis by c-Myc is a key pathway driving cell growth and tumorigenesis.


Assuntos
DNA Ribossômico/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase I/metabolismo , Transcrição Gênica , Sítios de Ligação , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Imunoprecipitação da Cromatina , DNA/química , Primers do DNA/química , DNA Ribossômico/metabolismo , Fibroblastos/metabolismo , Fase G1 , Células HeLa , Histonas/química , Humanos , Imunoprecipitação , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Modelos Genéticos , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , RNA Ribossômico/metabolismo , Fase de Repouso do Ciclo Celular , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
9.
Oncogene ; 41(24): 3355-3369, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35538224

RESUMO

The oncogene Ras and the tumor suppressor gene p53 are frequently co-mutated in human cancer and mutations in Ras and p53 can cooperate to generate a more malignant cell state. To discover novel druggable targets for cancers carrying co-mutations in Ras and p53, we performed arrayed, kinome focused siRNA and oncology drug phenotypic screening utilizing a set of syngeneic Ras mutant squamous cell carcinoma (SCC) cell lines that also carried co-mutations in selected p53 pathway genes. These cell lines were derived from SCCs from carcinogen-treated inbred mice which harbored germline deletions or mutations in Trp53, p19Arf, Atm, or Prkdc. Both siRNA and drug phenotypic screening converge to implicate the phosphoinositol kinases, receptor tyrosine kinases, MAP kinases, as well as cell cycle and DNA damage response genes as targetable dependencies in SCC. Differences in functional kinome profiles between Ras mutant cell lines reflect incomplete penetrance of Ras synthetic lethal kinases and indicate that co-mutations cause a rewiring of survival pathways in Ras mutant tumors. This study describes the functional kinomic landscape of Ras/p53 mutant chemically-induced squamous cell carcinoma in both the baseline unperturbed state and following DNA damage and nominates candidate therapeutic targets, including the Nek4 kinase, for further development.


Assuntos
Carcinoma de Células Escamosas , Proteína Supressora de Tumor p53 , Proteínas ras , Animais , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Humanos , Camundongos , Mutação , RNA Interferente Pequeno , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas ras/genética
10.
Mol Cancer Res ; 20(2): 244-252, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728552

RESUMO

In this era of precision medicine, numerous workflows for the targeting of high-recurrent mutations in common tumor types have been developed, leaving patients with rare diseases with few options. Here, we implement a functional precision oncology approach utilizing comprehensive genomic profiling in combination with high-throughput drug screening, to identify tumor-specific drug sensitivities for patients with rare tumor types such as myxofibrosarcoma. From a patient with a high-grade myxofibrosarcoma, who was enrolled in the Englander Institute for Precision Medicine (EIPM) program, we established patient-derived 3D sarco-spheres and xenograft models for functional testing. In the absence of a large cohort of clinically similar cases, high-throughput drug screening was performed on the patient-derived cells, and compared with two other myxofibrosarcoma lines and a benign fibroblast line to functionally identify tumor-specific drug sensitivities. The addition of functional drug sensitivity testing to complement genomic profiling identified multiple therapeutic options that were further validated in patient derived xenograft models. Genomic analyses detected the frequently known codeletion of the tumor suppressors CDKN2A/B together with the methylthioadenosine phosphorylase (MTAP) and a TP53 E286fs*50 mutation. High-throughput drug screening demonstrated tumor-specific sensitivity to compounds targeting the cell cycle. Based on genomic analysis and high-throughput drug screening, we show that targeting the cell cycle in these tumors is a powerful approach. IMPLICATIONS: This study demonstrates the potential of functional testing to aid clinical decision making for patients with rare or molecularly complex malignancies when combined with comprehensive genomic profiling.


Assuntos
Biomarcadores Tumorais/metabolismo , Fibrossarcoma/fisiopatologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oncologia/métodos , Terapia de Alvo Molecular/métodos , Medicina de Precisão/métodos , Animais , Feminino , Humanos , Camundongos , Camundongos Nus , Mutação
11.
Cancer Res ; 82(18): 3375-3393, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35819261

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) typically presents as metastatic disease at diagnosis and remains refractory to treatment. Next-generation sequencing efforts have described the genomic landscape, classified molecular subtypes, and confirmed frequent alterations in major driver genes, with coexistent alterations in KRAS and TP53 correlating with the highest metastatic burden and poorest outcomes. However, translating this information to guide therapy remains a challenge. By integrating genomic analysis with an arrayed RNAi druggable genome screen and drug profiling of a KRAS/TP53 mutant PDAC cell line derived from a patient-derived xenograft (PDCL), we identified numerous targetable vulnerabilities that reveal both known and novel functional aspects of pancreatic cancer biology. A dependence on the general transcription and DNA repair factor TFIIH complex, particularly the XPB subunit and the CAK complex (CDK7/CyclinH/MAT1), was identified and further validated utilizing a panel of genomically subtyped KRAS mutant PDCLs. TFIIH function was inhibited with a covalent inhibitor of CDK7/12/13 (THZ1), a CDK7/CDK9 kinase inhibitor (SNS-032), and a covalent inhibitor of XPB (triptolide), which led to disruption of the protein stability of the RNA polymerase II subunit RPB1. Loss of RPB1 following TFIIH inhibition led to downregulation of key transcriptional effectors of KRAS-mutant signaling and negative regulators of apoptosis, including MCL1, XIAP, and CFLAR, initiating caspase-8 dependent apoptosis. All three drugs exhibited synergy in combination with a multivalent TRAIL, effectively reinforcing mitochondrial-mediated apoptosis. These findings present a novel combination therapy, with direct translational implications for current clinical trials on metastatic pancreatic cancer patients. Significance: This study utilizes functional genetic and pharmacological profiling of KRAS-mutant pancreatic adenocarcinoma to identify therapeutic strategies and finds that TFIIH inhibition synergizes with TRAIL to induce apoptosis in KRAS-driven pancreatic cancer.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Quinases Ciclina-Dependentes/genética , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas
12.
J Exp Med ; 219(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35510953

RESUMO

Genetic alterations in RET lead to activation of ERK and AKT signaling and are associated with hereditary and sporadic thyroid cancer and lung cancer. Highly selective RET inhibitors have recently entered clinical use after demonstrating efficacy in treating patients with diverse tumor types harboring RET gene rearrangements or activating mutations. In order to understand resistance mechanisms arising after treatment with RET inhibitors, we performed a comprehensive molecular and genomic analysis of a patient with RET-rearranged thyroid cancer. Using a combination of drug screening and proteomic and biochemical profiling, we identified an adaptive resistance to RET inhibitors that reactivates ERK signaling within hours of drug exposure. We found that activation of FGFR signaling is a mechanism of adaptive resistance to RET inhibitors that activates ERK signaling. Combined inhibition of FGFR and RET prevented the development of adaptive resistance to RET inhibitors, reduced cell viability, and decreased tumor growth in cellular and animal models of CCDC6-RET-rearranged thyroid cancer.


Assuntos
Neoplasias Pulmonares , Neoplasias da Glândula Tireoide , Animais , Proteínas do Citoesqueleto/genética , Humanos , Neoplasias Pulmonares/patologia , Proteômica , Proteínas Proto-Oncogênicas c-ret/genética , Receptores de Fatores de Crescimento de Fibroblastos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética
13.
J Virol ; 84(21): 11461-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20739528

RESUMO

High-risk human papillomavirus (HR HPV) requires differentiating epithelial cells to continue to divide in order to replicate the viral DNA. To achieve this, HPV perturbs several regulatory pathways, including cellular apoptosis and senescence signals. HPV E6 has been identified as a regulator of the NFκB signaling pathway, a pathway important in many cellular processes, as well as regulation of virus-host cell interactions. We report here that NFX1-91, an endogenously expressed transcriptional regulator of human telomerase reverse transcriptase (hTERT) that is targeted by HPV type 16 (HPV16) E6/E6-associated protein (E6AP) for degradation, is also critical for regulation of the NFκB pathway by HPV16 E6. Microarray analysis revealed induction of NFκB-responsive genes and reduction of NFκB inhibitors with knockdown of NFX1-91. Knockdown of NFX1-91 induced downregulation of p105, an NFκB inhibitor in both primary human foreskin keratinocytes (HFKs) and HCT116 cells. Chromatin immunoprecipitation assays further confirmed that NFX1-91 bound to the p105 promoter and upregulated its expression. Similarly, in HPV16 E6-positive cells, reduction of p105 expression was observed, paralleling knockdown of NFX1-91 expression. Overall, our data suggest a mechanism for HPV16 E6 activation of the NFκB pathway through NFX1-91. Also, it provides evidence that NFX1-91 can function as a dual regulator, not only a transcriptional repressor, but also a transcriptional activator, when bound to DNA.


Assuntos
NF-kappa B/metabolismo , Proteínas Oncogênicas Virais/fisiologia , Proteínas Repressoras/fisiologia , Células Cultivadas , Humanos , Queratinócitos/metabolismo , Análise em Microsséries , Subunidade p50 de NF-kappa B/genética , Regiões Promotoras Genéticas , Fatores de Transcrição , Ativação Transcricional
14.
Mol Cancer Ther ; 20(4): 691-703, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33509905

RESUMO

Ovarian clear cell carcinoma (OCCC) is a rare, chemo-resistant subtype of ovarian cancer. To identify novel therapeutic targets and combination therapies for OCCC, we subjected a set of patient-derived ovarian cancer cell lines to arrayed high-throughput siRNA and drug screening. The results indicated OCCC cells are vulnerable to knockdown of epigenetic gene targets such as bromodomain and extra-terminal domain (BET) proteins BRD2 and BRD3. Subsequent RNA interference assays, as well as BET inhibitor treatments, validated these BET proteins as potential therapeutic targets. Because development of resistance to single targeted agents is common, we next performed sensitizer drug screens to identify potential combination therapies with the BET inhibitor CPI0610. Several PI3K or AKT inhibitors were among the top drug combinations identified and subsequent work showed CPI0610 synergized with alpelisib or MK2206 by inducing p53-independent apoptosis. We further verified synergy between CPI0610 and PI3K-AKT pathway inhibitors alpelisib, MK2206, or ipatasertib in tumor organoids obtained directly from patients with OCCC. These findings indicate further preclinical evaluation of BET inhibitors, alone or in combination with PI3K-AKT inhibitors for OCCC, is warranted.


Assuntos
Adenocarcinoma de Células Claras/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo , Adenocarcinoma de Células Claras/patologia , Feminino , Humanos , Neoplasias Ovarianas/patologia , Transfecção
15.
EBioMedicine ; 60: 102988, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32927276

RESUMO

BACKGROUND: Homologous recombination deficiencies (HRD) are present in approximately half of epithelial ovarian cancers, for which PARP inhibitors (PARPi) are becoming a preferred treatment option. However, a considerable proportion of these carcinomas acquire resistance or harbour de novo resistance, posing a significant challenge to treatment. METHODS: To identify new combinatorial therapeutics to overcome resistance to PARPi, we employed high-throughput conditional RNAi and drug screening of patient-derived ovarian cancer cells. To prioritise clinically relevant drug combinations, we integrated empirical validation with analysis of The Cancer Genome Atlas (TCGA) and Genomics of Drug Sensitivity in Cancer (GDSC) datasets to nominate candidate targets and drugs, reaching three main findings. FINDINGS: Firstly, we found that the PARPi rucaparib enhanced the effect of BET inhibitors (CPI-203 & CPI-0610) irrespective of clinical subtype or HRD status. Additional drug combination screens identified that dasatinib, a non-receptor tyrosine kinase inhibitor, augmented the effects of rucaparib and BET inhibitors, proposing a potential broadly applicable triple-drug combination for high-grade serous and clear cell ovarian carcinomas. Secondly, rucaparib synergised with the BCL2 family inhibitor navitoclax, with preferential activity in ovarian carcinomas that harbour alterations in BRCA1/2, BARD1, or MSH2/6. Thirdly, we identified potentially antagonistic drug combinations between the PARPi rucaparib and vinca alkaloids, anthracyclines, and antimetabolites, cautioning their use in the clinic. INTERPRETATION: These findings propose therapeutic strategies to address PARP inhibitor resistance using agents that are already approved or are in clinical development, with the potential for rapid translation to benefit a broad population of ovarian cancer patients.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/antagonistas & inibidores
16.
Clin Cancer Res ; 26(14): 3662-3670, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32376656

RESUMO

PURPOSE: Patients with colorectal cancer with peritoneal metastases (CRPMs) have limited treatment options and the lowest colorectal cancer survival rates. We aimed to determine whether organoid testing could help guide precision treatment for patients with CRPMs, as the clinical utility of prospective, functional drug screening including nonstandard agents is unknown. EXPERIMENTAL DESIGN: CRPM organoids (peritonoids) isolated from patients underwent parallel next-generation sequencing and medium-throughput drug panel testing ex vivo to identify specific drug sensitivities for each patient. We measured the utility of such a service including: success of peritonoid generation, time to cultivate peritonoids, reproducibility of the medium-throughput drug testing, and documented changes to clinical therapy as a result of the testing. RESULTS: Peritonoids were successfully generated and validated from 68% (19/28) of patients undergoing standard care. Genomic and drug profiling was completed within 8 weeks and a formal report ranking drug sensitivities was provided to the medical oncology team upon failure of standard care treatment. This resulted in a treatment change for two patients, one of whom had a partial response despite previously progressing on multiple rounds of standard care chemotherapy. The barrier to implementing this technology in Australia is the need for drug access and funding for off-label indications. CONCLUSIONS: Our approach is feasible, reproducible, and can guide novel therapeutic choices in this poor prognosis cohort, where new treatment options are urgently needed. This platform is relevant to many solid organ malignancies.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Organoides/efeitos dos fármacos , Neoplasias Peritoneais/tratamento farmacológico , Medicina de Precisão/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Austrália , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Estudos de Viabilidade , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/secundário , Peritônio/citologia , Peritônio/patologia , Cultura Primária de Células/métodos , Estudos Prospectivos , Reprodutibilidade dos Testes
17.
Mol Cancer Res ; 5(11): 1181-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17982115

RESUMO

The transcription factor c-Myc is implicated in the pathogenesis of many cancers. Among the multiple functions of c-Myc, activation of hTert and other genes involved in cellular life span contributes to its role as an oncogene. However, the ability of c-Myc to directly immortalize human cells remains controversial. We show here that overexpression of c-Myc reproducibly immortalizes freshly isolated human foreskin fibroblasts. c-Myc-immortalized cells displayed no gross karyotypic abnormalities but consisted of an oligoclonal population, suggesting that additional events cooperated to achieve immortalization. Levels of p53 and p16 were increased, but both p53-dependent DNA damage response and growth arrest in response to p16 overexpression remained intact. A marked decrease in expression of the tumor suppressor ARF occurred in several independently established c-Myc-immortalized cell lines. Methylation-specific PCR showed that the ARF gene was methylated in immortalized but not early-passage c-Myc cells, whereas p16 was unmethylated in both cell populations. Restoration of ARF expression by treatment with a demethylating agent or overexpression by a retroviral vector coincided with inhibition of proliferation and senescence of c-Myc-immortalized cells. Our findings predict that epigenetic events play a significant role in human tumors that express high levels of c-Myc.


Assuntos
Epigênese Genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Fatores de Transcrição/fisiologia , Proteína Supressora de Tumor p14ARF/genética , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Metilação de DNA , Regulação para Baixo , Fibroblastos/metabolismo , Humanos , Cariotipagem , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/genética
19.
Trends Cancer ; 4(9): 634-642, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30149881

RESUMO

Although cancer research is progressing at an exponential rate, translating this knowledge to develop better cancer drugs and more effectively match drugs to patients is lagging. Genome profiling of tumors provides a snapshot of the genetic complexity of individual tumors, yet this knowledge is insufficient to guide therapy for most patients. Model systems, usually cancer cell lines or mice, have been instrumental in cancer research and drug development, but translation of results to the clinic is inefficient, in part, because these models do not sufficiently reflect the complexity and heterogeneity of human cancer. Here, we discuss the potential of combining genomics with high-throughput functional testing of patient-derived tumor cells to overcome key roadblocks in both drug target discovery and precision medicine.


Assuntos
Neoplasias/terapia , Medicina de Precisão , Animais , Humanos , Terapia de Alvo Molecular
20.
J Clin Pathol ; 71(11): 957-962, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30104286

RESUMO

Cyclin-dependent kinase 12 (CDK12) belongs to the cyclin-dependent kinase (CDK) family of serine/threonine protein kinases that regulate transcriptional and post-transcriptional processes, thereby modulating multiple cellular functions. Early studies characterised CDK12 as a transcriptional CDK that complexes with cyclin K to mediate gene transcription by phosphorylating RNA polymerase II. CDK12 has been demonstrated to specifically upregulate the expression of genes involved in response to DNA damage, stress and heat shock. More recent studies have implicated CDK12 in regulating mRNA splicing, 3' end processing, pre-replication complex assembly and genomic stability during embryonic development. Genomic alterations in CDK12 have been detected in oesophageal, stomach, breast, endometrial, uterine, ovarian, bladder, colorectal and pancreatic cancers, ranging from 5% to 15% of sequenced cases. An increasing number of studies point to CDK12 inhibition as an effective strategy to inhibit tumour growth, and synthetic lethal interactions have been described with MYC, EWS/FLI and PARP/CHK1 inhibition. Herein, we discuss the present literature on CDK12 in cell function and human cancer, highlighting important roles for CDK12 as a clinical biomarker for treatment response and potential as an effective therapeutic target.


Assuntos
Biomarcadores Tumorais/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Neoplasias/enzimologia , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA