Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(34): 22210-22217, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30118134

RESUMO

The rotational spectra of 2- and 3-nitrobenzonitrile were recorded via chirped-pulse Fourier transform microwave spectroscopy in the frequency range of 2-8 GHz. These molecules each display large dipole moments, making them viable candidates for deceleration and trapping experiments with AC-electric fields. For both molecules, the main isotopologues and all isotopologues of the respective 13C-, 15N-, 18O-monosubstituted species in their natural abundance were assigned. These assignments allowed for the structural determination of 2- and 3-nitrobenzonitrile via Kraitchman's equations as well as a mass-dependent least-squares fitting approach. The experimentally determined structural parameters are then compared to those obtained from quantum-chemical calculations for these two molecules and 4-nitrobenzonitrile. Structural changes caused by steric interaction and competition for the electron density of the phenyl ring highlight how these strong electron-withdrawing substituents affect one another according to their respective positions on the phenyl ring.

2.
J Chem Phys ; 147(15): 154306, 2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29055340

RESUMO

The rotational spectrum of 4-nitroanisole was recorded via chirped-pulse Fourier transform microwave spectroscopy in the frequency range of 2-8 GHz. The spectra of the parent molecule and all of its 13C-, 15N-, and 18O-monosubstituted species in their natural abundance were assigned, and the molecular structure was determined using Kraitchman's equations as well as a least-square fitting approach. 4-nitroanisole has a large dipole moment of 6.15 D along the inertial a-axis and a smaller dipole moment of 0.78 D along the b-axis. The large dipole moment component makes this molecule a potential candidate for deceleration experiments using static electric fields or electromagnetic radiation. Using tailored microwave pulses, we investigate the possibility of transferring population between the rotational states of 4-nitroanisole. Such a technique could be applied to selectively increase the population for specific rotational states of interest, which are then accessible for further, more advanced experiments, such as deceleration.

3.
Chemphyschem ; 17(22): 3624-3630, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27459397

RESUMO

A numerical approach that employs a multi-level dressed state method to determine the AC-Stark shifts of molecular rotational energy levels is described. This approach goes beyond the two-level approximation often employed for simpler molecules, such as ammonia and acetonitrile, and is applicable to a variety of molecules. The calculations are used to develop experiments aimed at focusing, guiding, decelerating and trapping neutral, polyatomic, asymmetric-top molecules by using microwave fields. Herein, numerical calculations are performed for acetonitrile and 4-aminobenzonitrile. Based on these results, trajectory simulations are performed to predict the outcome of microwave focusing experiments in the TE1,1,p mode of a cylindrically symmetric microwave resonator. Simulations show that, for such an experimental setup, microwave focusing and guiding of 4-aminobenzonitrile requires starting longitudinal velocities close to, or below, 100 m s-1 , that is, much lower than values obtained with standard molecular beam techniques, such as supersonic expansion. Therefore, alternative beam-generation techniques, for example, buffer-gas-cooled molecular beams, are required to extend microwave manipulation methods to larger and more complex molecules.

4.
J Phys Chem A ; 119(23): 5995-6005, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25633369

RESUMO

Ab initio calculations were employed to investigate M(+)-RG2 species, where M(+) = Ca, Sr, Ba, and Ra and RG = He-Rn. Geometries have been optimized, and cuts through the potential energy surfaces containing each global minimum have been calculated at the MP2 level of theory, employing triple-ζ quality basis sets. The interaction energies for these complexes were calculated employing the RCCSD(T) level of theory with quadruple-ζ quality basis sets. Trends in binding energies, De, equilibrium bond lengths, Re, and bond angles are discussed and rationalized by analyzing the electronic density. Mulliken, natural population, and atoms-in-molecules (AIM) population analyses are presented. It is found that some of these complexes involving the heavier group 2 metals are bent whereas others are linear, deviating from observations for the corresponding Be and Mg metal-containing complexes, which have all previously been found to be bent. The results are discussed in terms of orbital hybridization and the different types of interaction present in these species.

5.
J Phys Chem A ; 118(28): 5164-9, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24911139

RESUMO

The rotational spectrum of 4-aminobenzonitrile in the gas phase between 2 and 8.5 GHz is reported. Due to the two chemically distinct nitrogen atoms, the observed transitions showed a rich hyperfine structure. From the determination of the nuclear quadrupole coupling constants, information about the electronic environment of these atoms could be inferred. The results are compared to data for related molecules, especially with respect to the absence of dual fluorescence in 4-aminobenzonitrile. In addition, the two-photon ionization spectrum of this molecule was recorded using a time-of-flight mass spectrometer integrated into the setup. This new experimental apparatus is presented here for the first time.

6.
J Phys Chem A ; 117(50): 13578-90, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24028378

RESUMO

Ab initio calculations were employed to determine the geometry (MP2 level), and dissociation energies [MP2 and RCCSD(T) levels], of the M(IIa)(+)-RG2 species, where M(IIa) is a group 2 metal, Be or Mg, and RG is a rare gas (He-Rn). We compare the results with similar calculations on M(Ia)(+)-RG2, where M(Ia) is a group 1 metal, Li or Na. It is found that the complexes involving the group 1 metals are linear (or quasilinear), whereas those involving the group 2 metals are bent. We discuss these results in terms of hybridization and the various interactions in these species. Trends in binding energies, D(e), bond lengths, and bond angles are discussed. We compare the energy required for the removal of a single RG atom from M(+)-RG2 (D(e2)) with that of the dissociation energy of M(+)-RG (D(e1)); some complexes have D(e2) > D(e1), some have D(e2) < D(e1), and some have values that are about the same. We also present relaxed angular cuts through a selection of potential energy surfaces. The trends observed in the geometries and binding energies of these complexes are discussed. Mulliken, natural population, and atoms-in-molecules (AIM) population analyses are performed, and it is concluded that the AIM method is the most reliable, giving results that are in line with molecular orbital diagrams and contour plots; unphysical amounts of charge transfer are suggested by the Mulliken and natural population approaches.

7.
J Phys Chem A ; 114(28): 7631-41, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20578713

RESUMO

We present high level ab initio potential energy curves for the M(n+)-RG complexes, where n = 1, 2, RG = rare gas, and M = Be and Mg. Spectroscopic constants have been derived from these potentials, and they generally show very good agreement with the available experimental data. The potentials have also been employed in calculating transport coefficients for M(+) moving through a bath of RG atoms, and the isotopic scaling relationship is examined for Mg(+) in Ne. Trends in binding energies, D(e), and bond lengths, R(e), are discussed and compared to similar ab initio results involving the corresponding complexes of the heavier alkaline earth metal ions. We identify some very unusual behavior, particularly for Be(+)-Ne, and offer possible explanations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA