Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Genet ; 20(2): e1011114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38346076

RESUMO

Filamentous fungi display allorecognition genes that trigger regulated cell death (RCD) when strains of unlike genotype fuse. Podospora anserina is one of several model species for the study of this allorecognition process termed heterokaryon or vegetative incompatibility. Incompatibility restricts transmission of mycoviruses between isolates. In P. anserina, genetic analyses have identified nine incompatibility loci, termed het loci. Here we set out to clone the genes controlling het-B incompatibility. het-B displays two incompatible alleles, het-B1 and het-B2. We find that the het-B locus encompasses two adjacent genes, Bh and Bp that exist as highly divergent allelic variants (Bh1/Bh2 and Bp1/Bp2) in the incompatible haplotypes. Bh encodes a protein with an N-terminal HET domain, a cell death inducing domain bearing homology to Toll/interleukin-1 receptor (TIR) domains and a C-terminal domain with a predicted lectin fold. The Bp product is homologous to PII-like proteins, a family of small trimeric proteins acting as sensors of adenine nucleotides in bacteria. We show that although the het-B system appears genetically allelic, incompatibility is in fact determined by the non-allelic Bh1/Bp2 interaction while the reciprocal Bh2/Bp1 interaction plays no role in incompatibility. The highly divergent C-terminal lectin fold domain of BH determines recognition specificity. Population studies and genome analyses indicate that het-B is under balancing selection with trans-species polymorphism, highlighting the evolutionary significance of the two incompatible haplotypes. In addition to emphasizing anew the central role of TIR-like HET domains in fungal RCD, this study identifies novel players in fungal allorecognition and completes the characterization of the entire het gene set in that species.


Assuntos
Podospora , Podospora/genética , Alelos , Lectinas/genética , Lectinas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Polimorfismo Genético
2.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135876

RESUMO

Gasdermins are a family of pore-forming proteins controlling an inflammatory cell death reaction in the mammalian immune system. The pore-forming ability of the gasdermin proteins is released by proteolytic cleavage with the removal of their inhibitory C-terminal domain. Recently, gasdermin-like proteins have been discovered in fungi and characterized as cell death-inducing toxins in the context of conspecific non-self-discrimination (allorecognition). Although functional analogies have been established between mammalian and fungal gasdermins, the molecular pathways regulating gasdermin activity in fungi remain largely unknown. Here, we characterize a gasdermin-based cell death reaction controlled by the het-Q allorecognition genes in the filamentous fungus Podospora anserina We show that the cytotoxic activity of the HET-Q1 gasdermin is controlled by proteolysis. HET-Q1 loses a ∼5-kDa C-terminal fragment during the cell death reaction in the presence of a subtilisin-like serine protease termed HET-Q2. Mutational analyses and successful reconstitution of the cell death reaction in heterologous hosts (Saccharomyces cerevisiae and human 293T cells) suggest that HET-Q2 directly cleaves HET-Q1 to induce cell death. By analyzing the genomic landscape of het-Q1 homologs in fungi, we uncovered that the vast majority of the gasdermin genes are clustered with protease-encoding genes. These HET-Q2-like proteins carry either subtilisin-like or caspase-related proteases, which, in some cases, correspond to the N-terminal effector domain of nucleotide-binding and oligomerization-like receptor proteins. This study thus reveals the proteolytic regulation of gasdermins in fungi and establishes evolutionary parallels between fungal and mammalian gasdermin-dependent cell death pathways.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Podospora/metabolismo , Apoptose/fisiologia , Morte Celular , Sobrevivência Celular , Proteínas Fúngicas/genética , Células HEK293 , Humanos , Podospora/genética , Proteólise , Saccharomyces cerevisiae , Subtilisina
3.
J Biol Chem ; 299(8): 105011, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414150

RESUMO

The pentose phosphate pathway (PPP) is critical for anabolism and biomass production. Here we show that the essential function of PPP in yeast is the synthesis of phosphoribosyl pyrophosphate (PRPP) catalyzed by PRPP-synthetase. Using combinations of yeast mutants, we found that a mildly decreased synthesis of PRPP affects biomass production, resulting in reduced cell size, while a more severe decrease ends up affecting yeast doubling time. We establish that it is PRPP itself that is limiting in invalid PRPP-synthetase mutants and that the resulting metabolic and growth defect can be bypassed by proper supplementation of the medium with ribose-containing precursors or by the expression of bacterial or human PRPP-synthetase. In addition, using documented pathologic human hyperactive forms of PRPP-synthetase, we show that intracellular PRPP as well as its derived products can be increased in both human and yeast cells, and we describe the ensuing metabolic and physiological consequences. Finally, we found that PRPP consumption appears to take place "on demand" by the various PRPP-utilizing pathways, as shown by blocking or increasing the flux in specific PRPP-consuming metabolic routes. Overall, our work reveals important similarities between human and yeast for both synthesis and consumption of PRPP.


Assuntos
Fosforribosil Pirofosfato , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Bactérias , Via de Pentose Fosfato , Ligases
4.
BMC Microbiol ; 12: 241, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23088225

RESUMO

BACKGROUND: Streptococcus pneumoniae infections remain a major cause of morbidity and mortality worldwide. The diversity of pneumococci was first evidenced by serotyping of their capsular polysaccharides, responsible of virulence, resolving into more than 93 serotypes. Molecular tools have been developed to track the emergence and the spread of resistant, hyper virulent or non-vaccine type clones, particularly DNA-based methods using genetic polymorphism. Pulsed-Field Gel Electrophoresis analysis (PFGE) and Multiple Loci Sequence Typing (MLST) are the most frequently used genotyping techniques for S. pneumoniae. MLST is based on sequence comparison of housekeeping genes clustering isolates within sequence types. The availability of genome sequence data from different S. pneumoniae strains facilitated the search for other class of genetic markers as polymorphic DNA sequences for a Multiple-Locus Variable-Number Tandem-Repeat Analysis (MLVA). This study aims at confirming the relevance of MLVA of S. pneumoniae, comparing MLST and MLVA performances when discriminating subgroups of strains belonging to the same Sequence Type (ST), and defining a restricted but universal set of MLVA markers that has at least the same discriminatory power as MLST for S. pneumoniae by applying marker sets used by different authors on 331 isolates selected in UK. RESULTS: A minimum spanning tree was built including the serotypes distribution and comparing MLVA and MLST results. 220 MLVA types were determined grouped in 10 Sequence Types (ST). MLVA differentiated ST162 in two clonal complexes. A minimal set was defined: ms 25 and ms37, ms17, ms19, ms33, ms39, and ms40 including two universal markers. The selection was based on MLVA markers with a Diversity Index >0.8 and a selection of others depending of the population tested and the aim of the study. This set of 7 MLVA markers yields strain clusters similar to those obtained by MLST. CONCLUSIONS: MLVA can discriminate relevant subgroups among strains belonging to the same ST. MLVA offers the possibility to deduce the ST from the MLVA Type. It permits to investigate local outbreaks or to track the worldwide spread of clones and the emergence of variants.


Assuntos
DNA Bacteriano/genética , Repetições Minissatélites , Tipagem de Sequências Multilocus/métodos , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Análise por Conglomerados , Surtos de Doenças , Genótipo , Humanos , Epidemiologia Molecular/métodos , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/microbiologia , Polimorfismo Genético , Reino Unido/epidemiologia
5.
Nat Ecol Evol ; 6(7): 910-923, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35551248

RESUMO

Allorecognition, the capacity to discriminate self from conspecific non-self, is a ubiquitous organismal feature typically governed by genes evolving under balancing selection. Here, we show that in the fungus Podospora anserina, allorecognition loci controlling vegetative incompatibility (het genes), define two reproductively isolated groups through pleiotropic effects on sexual compatibility. These two groups emerge from the antagonistic interactions of the unlinked loci het-r (encoding a NOD-like receptor) and het-v (encoding a methyltransferase and an MLKL/HeLo domain protein). Using a combination of genetic and ecological data, supported by simulations, we provide a concrete and molecularly defined example whereby the origin and coexistence of reproductively isolated groups in sympatry is driven by pleiotropic genes under balancing selection.


Assuntos
Podospora , Proteínas Fúngicas/genética , Podospora/genética , Podospora/metabolismo , Isolamento Reprodutivo
6.
mBio ; 12(1)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563842

RESUMO

In filamentous fungi, NLR-based signalosomes activate downstream membrane-targeting cell death-inducing proteins by a mechanism of amyloid templating. In the species Podospora anserina, two such signalosomes, NWD2/HET-S and FNT1/HELLF, have been described. An analogous system involving a distinct amyloid signaling motif, termed PP, was also identified in the genome of the species Chaetomium globosum and studied using heterologous expression in Podospora anserina The PP motif bears resemblance to the RIP homotypic interaction motif (RHIM) and to RHIM-like motifs controlling necroptosis in mammals and innate immunity in flies. We identify here a third NLR signalosome in Podospora anserina comprising a PP motif and organized as a two-gene cluster encoding an NLR and an HELL domain cell death execution protein termed HELLP. We show that the PP motif region of HELLP forms a prion we term [π] and that [π] prions trigger the cell death-inducing activity of full-length HELLP. We detect no prion cross-seeding between HET-S, HELLF, and HELLP amyloid motifs. In addition, we find that, like PP motifs, RHIMs from human RIP1 and RIP3 kinases are able to form prions in Podospora and that [π] and [Rhim] prions partially cross-seed. Our study shows that Podospora anserina displays three independent cell death-inducing amyloid signalosomes. Based on the described functional similarity between RHIM and PP, it appears likely that these amyloid motifs constitute evolutionarily related cell death signaling modules.IMPORTANCE Amyloids are ß-sheet-rich protein polymers that can be pathological or display a variety of biological roles. In filamentous fungi, specific immune receptors activate programmed cell death execution proteins through a process of amyloid templating akin to prion propagation. Among these fungal amyloid signaling sequences, the PP motif stands out because it shows similarity to the RHIM, an amyloid sequence controlling necroptotic cell death in mammals. We characterized an amyloid signaling system comprising a PP motif in the model species Podospora anserina, thus bringing to three the number of independent amyloid signaling cell death pathways described in that species. We then showed that human RHIMs not only propagate as prions in P. anserina but also partially cross-seed with fungal PP prions. These results indicate that, in addition to showing sequence similarity, the PP and RHIM motifs are at least partially functionally related, supporting a model of long-term evolutionary conservation of amyloid signaling mechanisms from fungi to mammals.


Assuntos
Amiloide/metabolismo , Chaetomium/fisiologia , Motivos de Nucleotídeos , Podospora/fisiologia , Príons/genética , Príons/fisiologia , Transdução de Sinais/genética , Amiloide/genética , Animais , Chaetomium/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacocinética , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Família Multigênica , Podospora/genética , Príons/classificação , Transdução de Sinais/fisiologia
7.
Elife ; 82019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31347500

RESUMO

Meiotic drive is the preferential transmission of a particular allele during sexual reproduction. The phenomenon is observed as spore killing in multiple fungi. In natural populations of Podospora anserina, seven spore killer types (Psks) have been identified through classical genetic analyses. Here we show that the Spok gene family underlies the Psks. The combination of Spok genes at different chromosomal locations defines the spore killer types and creates a killing hierarchy within a population. We identify two novel Spok homologs located within a large (74-167 kbp) region (the Spok block) that resides in different chromosomal locations in different strains. We confirm that the SPOK protein performs both killing and resistance functions and show that these activities are dependent on distinct domains, a predicted nuclease and kinase domain. Genomic and phylogenetic analyses across ascomycetes suggest that the Spok genes disperse through cross-species transfer, and evolve by duplication and diversification within lineages.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Meiose , Viabilidade Microbiana , Podospora/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia , Evolução Molecular
8.
PLoS One ; 10(7): e0133885, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26214695

RESUMO

BACKGROUND: Many surface proteins thought to promote Streptocococcus pneumoniae virulence have recently been discovered and are currently being considered as future vaccine targets. We assessed the prevalence of 16 virulence genes among 435 S. pneumoniae invasive isolates from France and the "African meningitis belt" region, with particular focus on serotype 1 (Sp1), to compare their geographical distribution, assess their association with site of infection and evaluate their potential interest as new vaccine candidates. METHODS: Detection by PCR of pspA (+families), pspC (+pspC.4), pavA, lytA, phtA,B,D,E, nanA,B,C, rrgA (Pilus-1), sipA (Pilus-2), pcpA and psrp was performed on all isolates, as well as antibiotic resistance testing and MLVA typing (+MLST on 54 representative strains). Determination of ply alleles was performed by sequencing (Sp1 isolates). RESULTS: MLVA and virulence genes profiles segregated Sp1 isolates into 2 groups that followed continent distribution. The ply allele 5 and most of the genes that were variable (nanC, Pilus-2, psrp, pcpA, phtD) were present in the French Sp1 isolates (PMEN clone Sweden(1)-28, ST306) but absent from the African ones. Whereas all African Sp1 isolates clustered into a single MLST CC (CC217), MLVA distinguished two CCs that followed temporal evolution. Pilus-2 and psrp were more prevalent in bacteraemic pneumonia yielded isolates and phtB in meningitis-related isolates. Considering vaccine candidates, phtD was less prevalent than anticipated (50%) and pcpA varied importantly between France and Africa (98% versus 34%). Pilus-1 was carried by 7-11% of isolates and associated with ß-lactams resistance. CONCLUSIONS: Most virulence genes were carried by the European ST306 clone but were lacking on Sp1 isolates circulating in the African meningitis belt, where a more serious pattern of infection is observed. While virulence proteins are now considered as vaccine targets, the geographical differences in their prevalence could affect the efficacy expected from future vaccines.


Assuntos
Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/genética , África , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , França , Humanos , Meningite Pneumocócica/imunologia , Meningite Pneumocócica/microbiologia , Meningite Pneumocócica/prevenção & controle , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Estreptocócicas/genética , Vacinas Estreptocócicas/imunologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/imunologia , Virulência/genética , Fatores de Virulência/genética
9.
Trans R Soc Trop Med Hyg ; 109(7): 477-80, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25934981

RESUMO

BACKGROUND: Serotype 1 was the most prevalent pneumococcal meningitis serotype encountered in Niger over the period 2003-2011 (pre-vaccination era), accounting for 45.3% of infections. METHODS: Multiple locus VNTR analysis (MLVA) was used to create a genotypic snapshot of a representative subset of the pneumococcal population of serotype 1. RESULTS: MLVA using 16 markers revealed a homogeneous genetic background of pneumococci serotype 1 from Niger, which clustered with few serotype 1 pneumococci from some African countries, while other African countries displayed different clonal complexes. DNA from Niger and from other African countries were different from pneumococci serotype 1 from European countries. CONCLUSIONS: MLVA-typing revealed a low genetic diversity among pneumococci serotype 1 from meningitis cases in Niger in the pre-vaccination era.


Assuntos
Meningite/microbiologia , Tipagem de Sequências Multilocus/métodos , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/genética , Variação Genética , Genótipo , Humanos , Repetições Minissatélites/genética , Níger/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/uso terapêutico , Prevalência , Sorotipagem , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA