Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330836

RESUMO

Many species of plants, animals, and microorganisms exchange genes well after the point of evolutionary divergence at which taxonomists recognize them as species. Genomes contain signatures of past gene exchange and, in some cases, they reveal a legacy of lineages that no longer exist. But genomic data are not available for many organisms, and particularly problematic for reconstructing and interpreting evolutionary history are communities that have been depleted by extinctions. For these, morphology may substitute for genes, as exemplified by the history of Darwin's finches on the Galápagos islands of Floreana and San Cristóbal. Darwin and companions collected seven specimens of a uniquely large form of Geospiza magnirostris in 1835. The populations became extinct in the next few decades, partly due to destruction of Opuntia cactus by introduced goats, whereas Geospiza fortis has persisted to the present. We used measurements of large samples of G. fortis collected for museums in the period 1891 to 1906 to test for unusually large variances and skewed distributions of beak and body size resulting from introgression. We found strong evidence of hybridization on Floreana but not on San Cristóbal. The skew is in the direction of the absent G. magnirostris We estimate introgression influenced 6% of the frequency distribution that was eroded by selection after G. magnirostris became extinct on these islands. The genetic residuum of an extinct species in an extant one has implications for its future evolution, as well as for a conservation program of reintroductions in extinction-depleted communities.


Assuntos
Tamanho Corporal/genética , Tentilhões/genética , Introgressão Genética/genética , Distribuição Animal , Animais , Conservação dos Recursos Naturais , Equador , Extinção Biológica , Genoma , Hibridização Genética , Especificidade da Espécie
2.
Proc Natl Acad Sci U S A ; 117(14): 7888-7896, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32213581

RESUMO

Introgressive hybridization can affect the evolution of populations in several important ways. It may retard or reverse divergence of species, enable the development of novel traits, enhance the potential for future evolution by elevating levels of standing variation, create new species, and alleviate inbreeding depression in small populations. Most of what is known of contemporary hybridization in nature comes from the study of pairs of species, either coexisting in the same habitat or distributed parapatrically and separated by a hybrid zone. More rarely, three species form an interbreeding complex (triad), reported in vertebrates, insects, and plants. Often, one species acts as a genetic link or conduit for the passage of genes (alleles) between two others that rarely, if ever, hybridize. Demographic and genetic consequences are unknown. Here we report results of a long-term study of interbreeding Darwin's finches on Daphne Major island, Galápagos. Geospiza fortis acted as a conduit for the passage of genes between two others that have never been observed to interbreed on Daphne: Geospiza fuliginosa, a rare immigrant, and Geospiza scandens, a resident. Microsatellite gene flow from G. fortis into G. scandens increased in frequency during 30 y of favorable ecological conditions, resulting in genetic and morphological convergence. G. fortis, G. scandens, and the derived dihybrids and trihybrids experienced approximately equal fitness. Especially relevant to young adaptive radiations, where species differ principally in ecology and behavior, these findings illustrate how new combinations of genes created by hybridization among three species can enhance the potential for evolutionary change.


Assuntos
Evolução Biológica , Tentilhões/genética , Hibridização Genética , Repetições de Microssatélites/genética , Alelos , Animais , Bico/crescimento & desenvolvimento , Cruzamento , Daphne/genética , Vertebrados/genética
3.
Proc Natl Acad Sci U S A ; 116(25): 12373-12382, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31160459

RESUMO

The adult sex ratio (ASR) is an important property of populations. Comparative phylogenetic analyses have shown that unequal sex ratios are associated with the frequency of changing mates, extrapair mating (EPM), mating system and parental care, sex-specific survival, and population dynamics. Comparative demographic analyses are needed to validate the inferences, and to identify the causes and consequences of sex ratio inequalities in changing environments. We tested expected consequences of biased sex ratios in two species of Darwin's finches in the Galápagos, where annual variation in rainfall, food supply, and survival is pronounced. Environmental perturbations cause sex ratios to become strongly male-biased, and when this happens, females have increased opportunities to choose high-quality males. The choice of a mate is influenced by early experience of parental morphology (sexual imprinting), and since morphological traits are highly heritable, mate choice is expressed as a positive correlation between mates. The expected assortative mating was demonstrated when the Geospiza scandens population was strongly male-biased, and not present in the contemporary Geospiza fortis population with an equal sex ratio. Initial effects of parental imprinting were subsequently overridden by other factors when females changed mates, some repeatedly. Females of both species were more frequently polyandrous in male-biased populations, and fledged more offspring by changing mates. The ASR ratio indirectly affected the frequency of EPM (and hybridization), but this did not lead to social mate choice. The study provides a strong demonstration of how mating patterns change when environmental fluctuations lead to altered sex ratios through differential mortality.


Assuntos
Tentilhões/fisiologia , Razão de Masculinidade , Comportamento Sexual Animal , Animais , Evolução Biológica , Equador , Feminino , Masculino
4.
Proc Natl Acad Sci U S A ; 116(46): 23216-23224, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659024

RESUMO

Adaptive radiations are prominent components of the world's biodiversity. They comprise many species derived from one or a small number of ancestral species in a geologically short time that have diversified into a variety of ecological niches. Several authors have proposed that introgressive hybridization has been important in the generation of new morphologies and even new species, but how that happens throughout evolutionary history is not known. Interspecific gene exchange is expected to have greatest impact on variation if it occurs after species have diverged genetically and phenotypically but before genetic incompatibilities arise. We use a dated phylogeny to infer that populations of Darwin's finches in the Galápagos became more variable in morphological traits through time, consistent with the hybridization hypothesis, and then declined in variation after reaching a peak. Some species vary substantially more than others. Phylogenetic inferences of hybridization are supported by field observations of contemporary hybridization. Morphological effects of hybridization have been investigated on the small island of Daphne Major by documenting changes in hybridizing populations of Geospiza fortis and Geospiza scandens over a 30-y period. G. scandens showed more evidence of admixture than G. fortis Beaks of G. scandens became progressively blunter, and while variation in length increased, variation in depth decreased. These changes imply independent effects of introgression on 2, genetically correlated, beak dimensions. Our study shows how introgressive hybridization can alter ecologically important traits, increase morphological variation as a radiation proceeds, and enhance the potential for future evolution in changing environments.


Assuntos
Variação Anatômica , Bico/anatomia & histologia , Tentilhões/genética , Especiação Genética , Hibridização Genética , Animais , Equador , Feminino , Tentilhões/anatomia & histologia , Masculino
5.
Nature ; 518(7539): 371-5, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25686609

RESUMO

Darwin's finches, inhabiting the Galápagos archipelago and Cocos Island, constitute an iconic model for studies of speciation and adaptive evolution. Here we report the results of whole-genome re-sequencing of 120 individuals representing all of the Darwin's finch species and two close relatives. Phylogenetic analysis reveals important discrepancies with the phenotype-based taxonomy. We find extensive evidence for interspecific gene flow throughout the radiation. Hybridization has given rise to species of mixed ancestry. A 240 kilobase haplotype encompassing the ALX1 gene that encodes a transcription factor affecting craniofacial development is strongly associated with beak shape diversity across Darwin's finch species as well as within the medium ground finch (Geospiza fortis), a species that has undergone rapid evolution of beak shape in response to environmental changes. The ALX1 haplotype has contributed to diversification of beak shapes among the Darwin's finches and, thereby, to an expanded utilization of food resources.


Assuntos
Bico/anatomia & histologia , Evolução Molecular , Tentilhões/anatomia & histologia , Tentilhões/genética , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Equador , Feminino , Tentilhões/classificação , Tentilhões/embriologia , Fluxo Gênico , Genoma/genética , Haplótipos/genética , Hibridização Genética , Ilhas do Oceano Índico , Masculino , Dados de Sequência Molecular , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(46): E10879-E10887, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30348758

RESUMO

Global biodiversity is being degraded at an unprecedented rate, so it is important to preserve the potential for future speciation. Providing for the future requires understanding speciation as a contemporary ecological process. Phylogenetically young adaptive radiations are a good choice for detailed study because diversification is ongoing. A key question is how incipient species become reproductively isolated from each other. Barriers to gene exchange have been investigated experimentally in the laboratory and in the field, but little information exists from the quantitative study of mating patterns in nature. Although the degree to which genetic variation underlying mate-preference learning is unknown, we provide evidence that two species of Darwin's finches imprint on morphological cues of their parents and mate assortatively. Statistical evidence of presumed imprinting is stronger for sons than for daughters and is stronger for imprinting on fathers than on mothers. In combination, morphology and species-specific song learned from the father constitute a barrier to interbreeding. The barrier becomes stronger the more the species diverge morphologically and ecologically. It occasionally breaks down, and the species hybridize. Hybridization is most likely to happen when species are similar to each other in adaptive morphological traits, e.g., body size and beak size and shape. Hybridization can lead to the formation of a new species reproductively isolated from the parental species as a result of sexual imprinting. Conservation of sufficiently diverse natural habitat is needed to sustain a large sample of extant biota and preserve the potential for future speciation.


Assuntos
Especiação Genética , Fixação Psicológica Instintiva/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Biodiversidade , Evolução Biológica , Ecologia , Ecossistema , Equador , Tentilhões/genética , Tentilhões/fisiologia , Hibridização Genética/genética , Fenótipo , Reprodução/fisiologia , Isolamento Reprodutivo , Especificidade da Espécie , Vocalização Animal
7.
Genome Res ; 27(6): 1004-1015, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28442558

RESUMO

Genomic comparisons of closely related species have identified "islands" of locally elevated sequence divergence. Genomic islands may contain functional variants involved in local adaptation or reproductive isolation and may therefore play an important role in the speciation process. However, genomic islands can also arise through evolutionary processes unrelated to speciation, and examination of their properties can illuminate how new species evolve. Here, we performed scans for regions of high relative divergence (FST) in 12 species pairs of Darwin's finches at different genetic distances. In each pair, we identify genomic islands that are, on average, elevated in both relative divergence (FST) and absolute divergence (dXY). This signal indicates that haplotypes within these genomic regions became isolated from each other earlier than the rest of the genome. Interestingly, similar numbers of genomic islands of elevated dXY are observed in sympatric and allopatric species pairs, suggesting that recent gene flow is not a major factor in their formation. We find that two of the most pronounced genomic islands contain the ALX1 and HMGA2 loci, which are associated with variation in beak shape and size, respectively, suggesting that they are involved in ecological adaptation. A subset of genomic island regions, including these loci, appears to represent anciently diverged haplotypes that evolved early during the radiation of Darwin's finches. Comparative genomics data indicate that these loci, and genomic islands in general, have exceptionally low recombination rates, which may play a role in their establishment.


Assuntos
Tentilhões/genética , Fluxo Gênico , Especiação Genética , Genoma , Filogenia , Adaptação Fisiológica/genética , Distribuição Animal , Animais , Equador , Tentilhões/classificação , Loci Gênicos , Ilhas Genômicas , Haplótipos , Repetições de Microssatélites , Polimorfismo Genético , Seleção Genética , Simpatria
8.
J Exp Zool B Mol Dev Evol ; 332(8): 365-370, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31742864

RESUMO

Throughout his life, John Tyler Bonner contributed to major transformations in the fields of developmental and evolutionary biology. He pondered the evolution of complexity and the significance of randomness in evolution, and was instrumental in the formation of evolutionary developmental biology. His contributions were vast, ranging from highly technical scientific articles to numerous books written for a broad audience. This historical vignette gathers reflections by several prominent researchers on the greatness of John Bonner and the implications of his work.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Dictyosteliida , História do Século XX , História do Século XXI
9.
Evol Anthropol ; 28(4): 189-209, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31222847

RESUMO

During the late Pleistocene, isolated lineages of hominins exchanged genes thus influencing genomic variation in humans in both the past and present. However, the dynamics of this genetic exchange and associated phenotypic consequences through time remain poorly understood. Gene exchange across divergent lineages can result in myriad outcomes arising from these dynamics and the environmental conditions under which it occurs. Here we draw from our collective research across various organisms, illustrating some of the ways in which gene exchange can structure genomic/phenotypic diversity within/among species. We present a range of examples relevant to questions about the evolution of hominins. These examples are not meant to be exhaustive, but rather illustrative of the diverse evolutionary causes/consequences of hybridization, highlighting potential drivers of human evolution in the context of hybridization including: influences on adaptive evolution, climate change, developmental systems, sex-differences in behavior, Haldane's rule and the large X-effect, and transgressive phenotypic variation.


Assuntos
Evolução Biológica , Hominidae , Hibridização Genética/genética , Animais , Antropologia Física , Feminino , Genoma Humano/genética , Hominidae/anatomia & histologia , Hominidae/genética , Humanos , Masculino , Camundongos , Homem de Neandertal/anatomia & histologia , Homem de Neandertal/genética , Fenótipo , Crânio/anatomia & histologia
10.
Bioessays ; 38(1): 14-20, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26606649

RESUMO

We recently used genome sequencing to study the evolutionary history of the Darwin's finches. A prominent feature of our data was that different polymorphic sites in the genome tended to indicate different genetic relationships among these closely related species. Such patterns are expected in recently diverged genomes as a result of incomplete lineage sorting. However, we uncovered conclusive evidence that these patterns have also been influenced by interspecies hybridisation, a process that has likely played an important role in the radiation of Darwin's finches. A major discovery was that segregation of two haplotypes at the ALX1 locus underlies variation in beak shape among the Darwin's finches, and that differences between the two haplotypes in a 240 kb region in blunt and pointed beaked birds involve both coding and regulatory changes. As we review herein, the evolution of such adaptive haplotypes comprising multiple causal changes appears to be an important mechanism contributing to the evolution of biodiversity.


Assuntos
Evolução Biológica , Tentilhões/genética , Filogenia , Animais , Sequência de Bases , Bico/anatomia & histologia , Tentilhões/anatomia & histologia , Genoma , Haplótipos
12.
Am Nat ; 183(5): 671-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24739199

RESUMO

This article explores how introgressive hybridization enhances the evolutionary effects of natural selection and how, reciprocally, natural selection can enhance the evolutionary effects of introgression. Both types of interaction were observed during a 40-year study of Darwin's finches (Geospiza) on the small Galápagos island of Daphne Major. Hybrids, produced rarely by Geospiza fortis (medium ground finch) breeding with Geospiza scandens (cactus finch) and Geospiza fuliginosa (small ground finch), survived and bred as well as the parental species in the past 3 decades. By backcrossing, they increased the standing genetic variation and thereby the evolutionary responsiveness of the populations to natural selection. Natural selection occurred in droughts and oscillated in direction as a result of climatically induced fluctuations in food composition. Introgressive hybridization has led to the formation of a new lineage. It was initiated by a large, introgressed, hybrid male with a unique song and genetic marker that immigrated from the nearby island of Santa Cruz and bred with local hybrids and with G. fortis. All members of the lineage died in the 2003-2005 drought except a brother and a sister, who then bred with each other. Subsequent increase in the lineage was facilitated by selective mortality of the largest G. fortis. Breeding endogamously, the lineage is behaving as a biological species.


Assuntos
Tentilhões/genética , Especiação Genética , Hibridização Genética , Seleção Genética , Animais , Bico , Evolução Biológica , Secas , Equador
13.
Proc Natl Acad Sci U S A ; 108(2): 674-9, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21199941

RESUMO

The genetic basis of variation in fitness of many organisms has been studied in the laboratory, but relatively little is known of fitness variation in natural environments or its causes. Lifetime fitness (recruitment) may be determined solely by producing many offspring, modified by stochastic effects on their subsequent survival up to the point of breeding, or by an additional contribution made by the high quality of the offspring owing to nonrandom mate choice. To investigate the determinants of lifetime fitness, we measured offspring production, longevity, and lifetime number of mates in four cohorts of two long-lived species of socially monogamous Darwin's finch species, Geospiza fortis and G. scandens, on the equatorial Galápagos Island of Daphne Major. Regression analysis showed that the lifetime production of fledglings was predicted by lifetime number of clutches and that recruitment was predicted by lifetime number of fledglings and longevity. There was little support for a hypothesis of selective mating by females. The offspring sired by extrapair mates were no more fit in terms of recruitment than were half-sibs sired by social mates. These findings provide insight into the evolution of life history strategies of tropical birds. Darwin's finches deviate from the standard tropical pattern of a slow pace of life by combining tropical (long lifespan) and temperate (large clutch size) characteristics. Our study of fitness shows why this is so in terms of selective pressures (fledgling production and adult longevity) and ecological opportunities (pulsed food supply and relatively low predation).


Assuntos
Evolução Biológica , Animais , Estudos de Coortes , Equador , Meio Ambiente , Feminino , Tentilhões , Variação Genética , Heterozigoto , Masculino , Análise de Regressão , Comportamento Sexual Animal , Fatores de Tempo
14.
Proc Natl Acad Sci U S A ; 108(10): 4057-62, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21368127

RESUMO

Bird beaks display tremendous variation in shape and size, which is closely associated with the exploitation of multiple ecological niches and likely played a key role in the diversification of thousands of avian species. Previous studies have demonstrated some of the molecular mechanisms that regulate morphogenesis of the prenasal cartilage, which forms the initial beak skeleton. However, much of the beak diversity in birds depends on variation in the premaxillary bone. It forms later in development and becomes the most prominent functional and structural component of the adult upper beak/jaw, yet its regulation is unknown. Here, we studied a group of Darwin's finch species with different beak shapes. We found that TGFßIIr, ß-catenin, and Dickkopf-3, the top candidate genes from a cDNA microarray screen, are differentially expressed in the developing premaxillary bone of embryos of species with different beak shapes. Furthermore, our functional experiments demonstrate that these molecules form a regulatory network governing the morphology of the premaxillary bone, which differs from the network controlling the prenasal cartilage, but has the same species-specific domains of expression. These results offer potential mechanisms that may explain how the tightly coupled depth and width dimensions can evolve independently. The two-module program of development involving independent regulating molecules offers unique insights into how different developmental pathways may be modified and combined to induce multidimensional shifts in beak morphology. Similar modularity in development may characterize complex traits in other organisms to a greater extent than is currently appreciated.


Assuntos
Bico/anatomia & histologia , Evolução Biológica , Tentilhões/anatomia & histologia , Animais , DNA Complementar , Tentilhões/embriologia , Tentilhões/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Fatores de Crescimento Transformadores beta/genética , Especificidade da Espécie , beta Catenina/genética
15.
Mol Phylogenet Evol ; 69(3): 581-92, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23906599

RESUMO

Introgression of genes through hybridization has been proposed to be an important driver of speciation, but in animals this has been shown only in relatively few cases until recently. Additionally, introgressive hybridization among non-sister species leads to a change in the gene tree topology of the concerned loci and thus complicates phylogenetic reconstruction. However, such cases of ancient introgression have been very difficult to demonstrate in birds. Here, we present such an example in an island bird subspecies, the Genovesa mockingbird (Mimus parvulus bauri). We assessed phylogenetic relationships and population structure among mockingbirds of the Galápagos archipelago using mitochondrial and nuclear DNA sequences, autosomal microsatellites, and morphological measurements. Mitochondrial haplotypes of Genovesa mockingbirds clustered closely with the haplotypes from two different species, San Cristóbal (M. melanotis) and Española (M. macdonaldi) mockingbirds. The same pattern was found for some haplotypes of two nuclear gene introns, while the majority of nuclear haplotypes of Genovesa mockingbirds were shared with other populations of the same species (M. parvulus). At 26 autosomal microsatellites, Genovesa mockingbirds grouped with other M. parvulus populations. This pattern shows that Genovesa mockingbirds contain mitochondria and some autosomal alleles that have most likely introgressed from M. melanotis into a largely M. parvulus background, making Genovesa mockingbirds a lineage of mixed ancestry, possibly undergoing speciation. Consistent with this hypothesis, mockingbirds on Genovesa are more clearly differentiated morphologically from other M. parvulus populations than M. melanotis is from M. parvulus.


Assuntos
Evolução Molecular , Genética Populacional , Passeriformes/classificação , Filogenia , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Equador , Haplótipos , Hibridização Genética , Repetições de Microssatélites , Passeriformes/anatomia & histologia , Passeriformes/genética , Análise de Sequência de DNA
16.
Proc Natl Acad Sci U S A ; 107(47): 20156-63, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21048082

RESUMO

Bird species sing different songs and as a result rarely breed with each other. Species are not static but can shift in acoustic and morphological space, yet maintain their distinctiveness. Investigating such a situation in a community of Darwin's finches sheds light on the origin and maintenance of premating barriers between species. Explanations for songs divergence generally invoke morphological changes to the sound-producing apparatus, environmental changes influencing transmitting properties of song, avoidance of acoustical interference with other species, and random processes including copying errors. We investigated changes in songs of Geospiza fortis (medium ground finch) and Geospiza scandens (cactus ground finch) from 1978 to 2010 on Daphne Major Island, Galápagos. The habitat did not change significantly; however, the finch community changed. The socially aggressive congener Geospiza magnirostris (large ground finch), singing in the same frequency band (2-4 kHz), colonized Daphne in 1983 and increased in numbers. Temporal features of the songs of G. fortis and G. scandens, especially trill rate and song duration, diverged from G. magnirostris songs as it became increasingly common. Changes in song were not a passive consequence of a change in beak morphology. Instead they arose as a bias during song imprinting and production. Sons of both G. fortis and G. scandens sang faster songs than their respective fathers and thereby differed more from G. magnirostris in their songs than did their fathers. Divergence from an aversive or confusing stimulus during learning illustrates a "peak shift" that may be a common feature of song evolution and speciation.


Assuntos
Evolução Cultural , Ecossistema , Tentilhões/fisiologia , Comportamento Sexual Animal/fisiologia , Vocalização Animal/fisiologia , Animais , Fenômenos Biomecânicos , Equador , Feminino , Tentilhões/genética , Hibridização Genética , Masculino , Modelos Biológicos , Dinâmica Populacional , Especificidade da Espécie
17.
Science ; 381(6665): eadf6218, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37769091

RESUMO

A fundamental goal in evolutionary biology is to understand the genetic architecture of adaptive traits. Using whole-genome data of 3955 of Darwin's finches on the Galápagos Island of Daphne Major, we identified six loci of large effect that explain 45% of the variation in the highly heritable beak size of Geospiza fortis, a key ecological trait. The major locus is a supergene comprising four genes. Abrupt changes in allele frequencies at the loci accompanied a strong change in beak size caused by natural selection during a drought. A gradual change in Geospiza scandens occurred across 30 years as a result of introgressive hybridization with G. fortis. This study shows how a few loci with large effect on a fitness-related trait contribute to the genetic potential for rapid adaptive radiation.


Assuntos
Adaptação Biológica , Bico , Tentilhões , Introgressão Genética , Especiação Genética , Seleção Genética , Animais , Bico/anatomia & histologia , Equador , Tentilhões/anatomia & histologia , Tentilhões/genética , Frequência do Gene , Metagenômica , Loci Gênicos
18.
Ecol Evol ; 13(3): e9766, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36969922

RESUMO

Island systems have long served as a model for evolutionary processes due to their unique species interactions. Many studies of the evolution of species interactions on islands have focused on endemic taxa. Fewer studies have focused on how antagonistic and mutualistic interactions shape the phenotypic divergence of widespread nonendemic species living on islands. We used the widespread plant Tribulus cistoides (Zygophyllaceae) to study phenotypic divergence in traits that mediate antagonistic interactions with vertebrate granivores (birds) and mutualistic interactions with pollinators, including how this is explained by bioclimatic variables. We used both herbarium specimens and field-collected samples to compare phenotypic divergence between continental and island populations. Fruits from island populations were larger than on continents, but the presence of lower spines on mericarps was less frequent on islands. The presence of spines was largely explained by environmental variation among islands. Petal length was on average 9% smaller on island than continental populations, an effect that was especially accentuated on the Galápagos Islands. Our results show that Tribulus cistoides exhibits phenotypic divergence between island and continental habitats for antagonistic traits (seed defense) and mutualistic traits (floral traits). Furthermore, the evolution of phenotypic traits that mediate antagonistic and mutualistic interactions partially depended on the abiotic characteristics of specific islands. This study shows the potential of using a combination of herbarium and field samples for comparative studies on a globally distributed species to study phenotypic divergence on island habitats.

19.
Mol Biol Evol ; 28(6): 1943-56, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21273633

RESUMO

The study describes >400 major histocompatibility complex (MHC) class II B exon 2 and 114 intron 2 sequences of 36 passerine bird species, 13 of which belong to the group of Darwin's finches (DFs) and the remaining 23 to close or more distant relatives of DFs in Central and South America. The data set is analyzed by a combination of judiciously selected statistical methods. The analysis reveals that reliable information concerning MHC organization, including the assignment of sequences to loci, and evolution, as well as the process of species divergence, can be obtained in the absence of genomic sequence data, if the analysis is taken several steps beyond the standard phylogenetic tree construction approach. The main findings of the present study are these: The MHC class II B region of the passerine birds is as elaborate in its organization, divergence, and genetic diversity as the MHC of the eutherian mammals, specifically the primates. Hence, the reported simplicity of the fowl MHC is an oddity. With the help of appropriate markers, the divergence of the MHC genes can be traced deep in the phylogeny of the bird taxa. Transspecies polymorphism is rampant at many of the bird MHC loci. In this respect, the DFs behave as if they were a single, genetically undifferentiated population. There is thus far no indication of alleles that could be considered species, genus, or even DF group specific. The implication of these findings is that DFs are in the midst of adaptive radiations, in which morphological differentiation into species is running ahead of genetic differentiation in genetic systems such as the MHC or the mitochondrial DNA. The radiations are so young that there has not been enough time to sort out polymorphisms at most of the loci among the morphologically differentiating species. These findings parallel those on Lake Victoria haplochromine fishes. Several of the DF MHC allelic lineages can be traced back to the MHC genes of the species Tiaris obscura, which we identified previously as the closest extant relative of DFs in continental America.


Assuntos
Tentilhões/genética , Variação Genética , Antígenos de Histocompatibilidade Classe II/genética , Polimorfismo Genético , Sequência de Aminoácidos , Animais , Duplicação Cromossômica/genética , Análise por Conglomerados , Evolução Molecular , Éxons , Galliformes/genética , Ordem dos Genes , Dados de Sequência Molecular , Primatas/genética , Alinhamento de Sequência
20.
Nature ; 442(7102): 563-7, 2006 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-16885984

RESUMO

A classic textbook example of adaptive radiation under natural selection is the evolution of 14 closely related species of Darwin's finches (Fringillidae, Passeriformes), whose primary diversity lies in the size and shape of their beaks. Thus, ground finches have deep and wide beaks, cactus finches have long and pointed beaks (low depth and narrower width), and warbler finches have slender and pointed beaks, reflecting differences in their respective diets. Previous work has shown that even small differences in any of the three major dimensions (depth, width and length) of the beak have major consequences for the overall fitness of the birds. Recently we used a candidate gene approach to explain one pathway involved in Darwin's finch beak morphogenesis. However, this type of analysis is limited to molecules with a known association with craniofacial and/or skeletogenic development. Here we use a less constrained, complementary DNA microarray analysis of the transcripts expressed in the beak primordia to find previously unknown genes and pathways whose expression correlates with specific beak morphologies. We show that calmodulin (CaM), a molecule involved in mediating Ca2+ signalling, is expressed at higher levels in the long and pointed beaks of cactus finches than in more robust beak types of other species. We validated this observation with in situ hybridizations. When this upregulation of the CaM-dependent pathway is artificially replicated in the chick frontonasal prominence, it causes an elongation of the upper beak, recapitulating the beak morphology of the cactus finches. Our results indicate that local upregulation of the CaM-dependent pathway is likely to have been a component of the evolution of Darwin's finch species with elongated beak morphology and provide a mechanistic explanation for the independence of beak evolution along different axes. More generally, our results implicate the CaM-dependent pathway in the developmental regulation of craniofacial skeletal structures.


Assuntos
Bico/anatomia & histologia , Evolução Biológica , Calmodulina/metabolismo , Tentilhões/anatomia & histologia , Tentilhões/metabolismo , Animais , Bico/embriologia , Bico/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Calmodulina/genética , Embrião de Galinha , Análise por Conglomerados , Tentilhões/classificação , Tentilhões/genética , Regulação da Expressão Gênica , Modelos Biológicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA