Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Arch Toxicol ; 98(4): 1191-1208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244039

RESUMO

Cancer survivors may experience long-term cardiovascular complications due to chemotherapeutic drugs such as doxorubicin (DOX). The exact mechanism of delayed DOX-induced cardiotoxicity has not been fully elucidated. Sex is an important risk factor for DOX-induced cardiotoxicity. In the current study, we identified sex differences in delayed DOX-induced cardiotoxicity and determined the underlying molecular determinants of the observed sexual dimorphism. Five-week-old male and female mice were administered intraperitoneal injections of DOX (4 mg/kg/week) or saline for 6 weeks. Echocardiography was performed 5 weeks after the last dose of DOX to evaluate cardiac function. Thereafter, mice were sacrificed and gene expression of markers of apoptosis, senescence, and inflammation was measured by PCR in hearts and livers. Proteomic profiling of the heart from both sexes was conducted to determine differentially expressed proteins (DEPs). Only DOX-treated male, but not female, mice demonstrated cardiac dysfunction, cardiac atrophy, and upregulated cardiac expression of Nppb and Myh7. No sex-related differences were observed in DOX-induced expression of most apoptotic, senescence, and pro-inflammatory markers. However, the gene expression of Trp53 was significantly reduced in hearts of DOX-treated female mice only. The anti-inflammatory marker Il-10 was significantly reduced in hearts of DOX-treated male mice only, while the pro-inflammatory marker Il-1α was significantly reduced in livers of DOX-treated female mice only. Gene expression of Tnf-α was reduced in hearts of both DOX-treated male and female mice. Proteomic analysis identified several DEPs after DOX treatment in a sex-specific manner, including anti-inflammatory acute phase proteins. This is the first study to assess sex-specific proteomic changes in a mouse model of delayed DOX-induced cardiotoxicity. Our proteomic analysis identified several sexually dimorphic DEPs, many of which are associated with the anti-inflammatory marker Il-10.


Assuntos
Cardiotoxicidade , Cardiopatias , Feminino , Masculino , Camundongos , Animais , Cardiotoxicidade/etiologia , Caracteres Sexuais , Interleucina-10/toxicidade , Antibióticos Antineoplásicos/toxicidade , Proteômica , Camundongos Endogâmicos C57BL , Doxorrubicina , Cardiopatias/induzido quimicamente , Cardiopatias/genética , Apoptose , Anti-Inflamatórios/farmacologia , Miócitos Cardíacos , Estresse Oxidativo
2.
Stress ; 25(1): 291-304, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35942624

RESUMO

Childhood cancer survivors have a high risk for premature cardiovascular diseases, mainly due to cardiotoxic cancer treatments such as doxorubicin (DOX). Psychosocial stress is a significant cardiovascular risk factor and an enormous burden in childhood cancer survivors. Although observational studies suggest that psychosocial stress is associated with cardiovascular complications in cancer survivors, there is no translationally relevant animal model to study this interaction. We established a "two-hit" model in which juvenile mice were administered DOX (4 mg/kg/week for 3 weeks), paired to a validated model of chronic subordination stress (CSS) 5 weeks later upon reaching adulthood. Blood pressure, heart rate, and activity were monitored by radio-telemetry. At the end of CSS experiment, cardiac function was assessed by echocardiography. Cardiac fibrosis and inflammation were assessed by histopathologic analysis. Gene expressions of inflammatory and fibrotic markers were determined by PCR. Juvenile exposure to DOX followed by adult-onset CSS caused cardiac fibrosis and inflammation as evident by histopathologic findings and upregulated gene expression of multiple inflammatory and fibrotic markers. Intriguingly, juvenile exposure to DOX blunted CSS-induced hypertension but not CSS-induced tachycardia. There were no significant differences in cardiac function parameters among all groups, but juvenile exposure to DOX abrogated the hypertrophic response to CSS. In conclusion, we established a translationally relevant mouse model of juvenile DOX-induced cardiotoxicity that predisposes to adult-onset stress-induced adverse cardiac remodeling. Psychosocial stress should be taken into consideration in cardiovascular risk stratification of DOX-treated childhood cancer survivors.


Assuntos
Doxorrubicina , Estresse Psicológico , Animais , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Modelos Animais de Doenças , Doxorrubicina/metabolismo , Doxorrubicina/toxicidade , Fibrose , Inflamação/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo
3.
Gastroenterology ; 159(6): 2181-2192.e1, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32841647

RESUMO

BACKGROUND & AIMS: Clostridioides difficile toxin A (TcdA) activates the innate immune response. TcdA co-purifies with DNA. Toll-like receptor 9 (TLR9) recognizes bacterial DNA to initiate inflammation. We investigated whether DNA bound to TcdA activates an inflammatory response in murine models of C difficile infection via activation of TLR9. METHODS: We performed studies with human colonocytes and monocytes and macrophages from wild-type and TLR9 knockout mice incubated with TcdA or its antagonist (ODN TTAGGG) or transduced with vectors encoding TLR9 or small-interfering RNAs. Cytokine production was measured with enzyme-linked immunosorbent assay. We studied a transduction domain of TcdA (TcdA57-80), which was predicted by machine learning to have cell-penetrating activity and confirmed by synchrotron small-angle X-ray scattering. Intestines of CD1 mice, C57BL6J mice, and mice that express a form of TLR9 that is not activated by CpG DNA were injected with TcdA, TLR9 antagonist, or both. Enterotoxicity was estimated based on loop weight to length ratios. A TLR9 antagonist was tested in mice infected with C difficile. We incubated human colon explants with an antagonist of TLR9 and measured TcdA-induced production of cytokines. RESULTS: The TcdA57-80 protein transduction domain had membrane remodeling activity that allowed TcdA to enter endosomes. TcdA-bound DNA entered human colonocytes. TLR9 was required for production of cytokines by cultured cells and in human colon explants incubated with TcdA. TLR9 was required in TcdA-induced mice intestinal secretions and in the survival of mice infected by C difficile. Even in a protease-rich environment, in which only fragments of TcdA exist, the TcdA57-80 domain organized DNA into a geometrically ordered structure that activated TLR9. CONCLUSIONS: TcdA from C difficile can bind and organize bacterial DNA to activate TLR9. TcdA and TcdA fragments remodel membranes, which allows them to access endosomes and present bacterial DNA to and activate TLR9. Rather than inactivating the ability of DNA to bind TLR9, TcdA appears to chaperone and organize DNA into an inflammatory, spatially periodic structure.


Assuntos
Toxinas Bacterianas/metabolismo , Clostridioides difficile/imunologia , Infecções por Clostridium/imunologia , Colite/imunologia , Enterotoxinas/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Antibacterianos/efeitos adversos , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Infecções por Clostridium/induzido quimicamente , Infecções por Clostridium/microbiologia , Colite/induzido quimicamente , Colite/microbiologia , DNA Bacteriano/metabolismo , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Humanos , Imunidade Inata , Camundongos , Camundongos Knockout , Chaperonas Moleculares/metabolismo , Transdução de Sinais/imunologia , Receptor Toll-Like 9/genética
4.
BMC Vet Res ; 17(1): 378, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876121

RESUMO

BACKGROUND: Both human and veterinary cancer chemotherapy are undergoing a paradigm shift from a "one size fits all" approach to more personalized, patient-oriented treatment strategies. Personalized chemotherapy is dependent on the identification and validation of biomarkers that can predict treatment outcome and/or risk of toxicity. Many cytotoxic chemotherapy agents, including doxorubicin, base their mechanism of action by interaction with DNA and disruption of normal cellular processes. We developed a high-resolution/accurate-mass liquid chromatography-mass spectrometry DNA screening approach for monitoring doxorubicin-induced DNA modifications (adducts) in vitro and in vivo. We used, for the first time, a new strategy involving the use of isotope-labeled DNA, which greatly facilitates adduct discovery. The overall goal of this work was to identify doxorubicin-DNA adducts to be used as biomarkers to predict drug efficacy for use in veterinary oncology. RESULTS: We used our novel mass spectrometry approach to screen for adducts in purified DNA exposed to doxorubicin. This initial in vitro screening identified nine potential doxorubicin-DNA adduct masses, as well as an intense signal corresponding to DNA-intercalated doxorubicin. Two of the adduct masses, together with doxorubicin and its metabolite doxorubicinol, were subsequently detected in vivo in liver DNA extracted from mice exposed to doxorubicin. Finally, the presence of these adducts and analytes was explored in the DNA isolated from dogs undergoing treatment with doxorubicin. The previously identified nine DOX-DNA adducts were not detected in these preliminary three samples collected seven days post-treatment, however intercalated doxorubicin and doxorubicinol were detected. CONCLUSIONS: This work sets the stage for future evaluation of doxorubicin-DNA adducts and doxorubicin-related molecules as candidate biomarkers to personalize chemotherapy protocols for canine cancer patients. It demonstrates our ability to combine in one method the analysis of DNA adducts and DNA-intercalated doxorubicin and doxorubicinol. The last two analytes interestingly, were persistent in samples from canine patients undergoing doxorubicin chemotherapy seven days after treatment. The presence of doxorubicin in all samples suggests a role for it as a promising biomarker for use in veterinary chemotherapy. Future studies will involve the analysis of more samples from canine cancer patients to elucidate optimal timepoints for monitoring intercalated doxorubicin and doxorubicin-DNA adducts and the correlation of these markers with therapy outcome.


Assuntos
Doenças do Cão , Doxorrubicina , Neoplasias , Animais , Biomarcadores , DNA , Adutos de DNA , Doenças do Cão/tratamento farmacológico , Cães , Doxorrubicina/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/veterinária
5.
Int J Mol Sci ; 22(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445729

RESUMO

Doxorubicin (DOX) is one of the most widely used chemo-therapeutic agents in pediatric oncology. DOX elicits an inflammatory response in multiple organs, which contributes to DOX-induced adverse effects. Cancer itself causes inflammation leading to multiple pathologic conditions. The current study investigated the inflammatory response to DOX and tumors using an EL4-lymphoma, immunocompetent, juvenile mouse model. Four-week old male C57BL/6N mice were injected subcutaneously with EL4 lymphoma cells (5 × 104 cells/mouse) in the flank region, while tumor-free mice were injected with vehicle. Three days following tumor implantation, both tumor-free and tumor-bearing mice were injected intraperitoneally with either DOX (4 mg/kg/week) or saline for 3 weeks. One week after the last DOX injection, the mice were euthanized and the hearts, livers, kidneys, and serum were harvested. Gene expression and serum concentration of inflammatory markers were quantified using real-time PCR and ELISA, respectively. DOX treatment significantly suppressed tumor growth in tumor-bearing mice and caused significant cardiac atrophy in tumor-free and tumor-bearing mice. EL4 tumors elicited a strong inflammatory response in the heart, liver, and kidney. Strikingly, DOX treatment ameliorated tumor-induced inflammation paradoxical to the effect of DOX in tumor-free mice, demonstrating a widely divergent effect of DOX treatment in tumor-free versus tumor-bearing mice.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Inflamação/tratamento farmacológico , Linfoma/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Citocinas/sangue , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Coração/efeitos dos fármacos , Inflamação/sangue , Inflamação/etiologia , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Linfoma/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo
6.
Clin Sci (Lond) ; 134(21): 2897-2927, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185690

RESUMO

Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.


Assuntos
Citocromo P-450 CYP1B1/antagonistas & inibidores , Neoplasias Cardíacas/tratamento farmacológico , Oncologia , Terapia de Alvo Molecular , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Cardiotoxicidade/complicações , Neoplasias Cardíacas/radioterapia , Humanos
7.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32074957

RESUMO

Doxorubicin (DOX) is an effective chemotherapeutic agent used to treat a wide variety of malignancies. In addition to its multi-organ toxicity, DOX treatment has been shown to induce systemic inflammation in patients and experimental animals. Inflammation alters the expression of hepatic cytochrome P450 (CYP) enzymes, which play important roles in drug metabolism and DOX-induced toxicity. Significant sex differences have been reported in DOX-induced toxicity; however, sex differences in DOX-induced systemic inflammation and the potential effects on hepatic CYP expression have not been determined. In the current work, male and female C57Bl/6 mice were administered DOX (20 mg/kg by intraperitoneal injection), and groups of mice were sacrificed 24 and 72 h after DOX administration. DOX elicited a systemic inflammatory response in both male and female mice, but the inflammatory response was stronger in male mice. DOX altered the expression of hepatic CYP isoforms in a sex-dependent manner. Most notably, inhibition of Cyp2c29 and Cyp2e1 was stronger in male than in female mice, which paralleled the sex differences in systemic inflammation. Therefore, sex differences in DOX-induced systemic inflammation may lead to sexually dimorphic drug interactions, in addition to contributing to the previously reported sexual dimorphism in specific DOX-induced organ toxicity.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Doxorrubicina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/enzimologia , Animais , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Feminino , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Injeções Intraperitoneais , Interleucina-6/sangue , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Caracteres Sexuais , Fator de Necrose Tumoral alfa/sangue
8.
Biol Proced Online ; 21: 6, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019379

RESUMO

Antibodies are commonly used to detect or isolate proteins from biological samples. Much attention has been paid to the potential for poorly-characterized antibodies to lead to misleading results, but antibody-independent artefacts may also occur. Here, we recount two examples of antibody-independent artefacts that have confounded the interpretation of results in our search for molecular entities associated with memory loss in Alzheimer's disease (AD). First, when using biotin-avidin systems for antibody detection, endogenous biotinylated proteins created spurious bands in Western blots of brain lysates from AD patients and transgenic mouse models of AD. These artefactual bands occurred in a transgene- and strain-dependent manner. A second, unexpected artefact occurred when Protein A-conjugated Sepharose beads were used to deplete lysates of endogenous immunoglobulins prior to immunopurification of target proteins. In these assays, Protein A shed from the beads, then bound to (and was eluted from) an immunoaffinity matrix designed to capture AD-related proteins. The Protein A then bound detection antibodies when the immunoaffinity eluates were analyzed by Western blot. Both of these artefacts-the endogenous biotinylated proteins and the Protein A artefact-can be monitored by including an "irrelevant" antibody as an experimental control (e.g., running a parallel protocol in which the antibody directed against the target of interest is replaced by a non-specific antibody).

9.
Blood ; 130(23): 2548-2558, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-28899852

RESUMO

Hemostasis in vertebrates involves both a cellular and a protein component. Previous studies in jawless vertebrates (cyclostomes) suggest that the protein response, which involves thrombin-catalyzed conversion of a soluble plasma protein, fibrinogen, into a polymeric fibrin clot, is conserved in all vertebrates. However, similar data are lacking for the cellular response, which in gnathostomes is regulated by von Willebrand factor (VWF), a glycoprotein that mediates the adhesion of platelets to the subendothelial matrix of injured blood vessels. To gain evolutionary insights into the cellular phase of coagulation, we asked whether a functional vwf gene is present in the Atlantic hagfish, Myxine glutinosa We found a single vwf transcript that encodes a simpler protein compared with higher vertebrates, the most striking difference being the absence of an A3 domain, which otherwise binds collagen under high-flow conditions. Immunohistochemical analyses of hagfish tissues and blood revealed Vwf expression in endothelial cells and thrombocytes. Electron microscopic studies of hagfish tissues demonstrated the presence of Weibel-Palade bodies in the endothelium. Hagfish Vwf formed high-molecular-weight multimers in hagfish plasma and in stably transfected CHO cells. In functional assays, botrocetin promoted VWF-dependent thrombocyte aggregation. A search for vwf sequences in the genome of sea squirts, the closest invertebrate relatives of hagfish, failed to reveal evidence of an intact vwf gene. Together, our findings suggest that VWF evolved in the ancestral vertebrate following the divergence of the urochordates some 500 million years ago and that it acquired increasing complexity though sequential insertion of functional modules.


Assuntos
Feiticeiras (Peixe) , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Proteína ADAMTS13/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Clonagem Molecular , Cricetulus , DNA Complementar , Endotélio Vascular/metabolismo , Evolução Molecular , Expressão Gênica , Homeostase , Humanos , Modelos Moleculares , Agregação Plaquetária , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteólise , Relação Estrutura-Atividade , Vertebrados , Corpos de Weibel-Palade/metabolismo , Corpos de Weibel-Palade/ultraestrutura , Fator de von Willebrand/química
10.
Circ Res ; 115(2): 238-251, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24874427

RESUMO

RATIONALE: Forkhead box-O transcription factors (FoxOs) transduce a wide range of extracellular signals, resulting in changes in cell survival, cell cycle progression, and several cell type-specific responses. FoxO1 is expressed in many cell types, including endothelial cells (ECs). Previous studies have shown that Foxo1 knockout in mice results in embryonic lethality at E11 because of impaired vascular development. In contrast, somatic deletion of Foxo1 is associated with hyperproliferation of ECs. Thus, the precise role of FoxO1 in the endothelium remains enigmatic. OBJECTIVE: To determine the effect of endothelial-specific knockout and overexpression of FoxO1 on vascular homeostasis. METHODS AND RESULTS: We show that EC-specific disruption of Foxo1 in mice phenocopies the full knockout. Although endothelial expression of FoxO1 rescued otherwise Foxo1-null animals, overexpression of constitutively active FoxO1 resulted in increased EC size, occlusion of capillaries, elevated peripheral resistance, heart failure, and death. Knockdown of FoxO1 in ECs resulted in marked inhibition of basal and vascular endothelial growth factor-induced Akt-mammalian target of rapamycin complex 1 (mTORC1) signaling. CONCLUSIONS: Our findings suggest that in mice, endothelial expression of FoxO1 is both necessary and sufficient for embryonic development. Moreover, FoxO1-mediated feedback activation of Akt maintains growth factor responsive Akt/mTORC1 activity within a homeostatic range.


Assuntos
Células Endoteliais/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Insuficiência Cardíaca/genética , Complexos Multiproteicos/fisiologia , Neovascularização Fisiológica/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Animais , Indução Enzimática , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Insuficiência Cardíaca/fisiopatologia , Homeostase , Células Endoteliais da Veia Umbilical Humana , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neovascularização Fisiológica/genética , Óxido Nítrico Sintase Tipo III/biossíntese , Óxido Nítrico Sintase Tipo III/genética , Especificidade de Órgãos , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão , Transdução de Sinais/fisiologia , Saco Vitelino/irrigação sanguínea
11.
Brain ; 136(Pt 5): 1383-98, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23576130

RESUMO

Alzheimer's disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-ß aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effects of amyloid-ß in this cascade. Amyloid plaques comprised of insoluble, fibrillar amyloid-ß aggregates are the most characteristic feature of Alzheimer's disease. However, the correspondence between the distribution of plaques and the pattern of neurodegeneration is tenuous. This discrepancy has stimulated the investigation of other amyloid-ß aggregates, including soluble amyloid-ß oligomers. Different soluble amyloid-ß oligomers have been studied in several mouse models, but not systematically in humans. Here, we measured three amyloid-ß oligomers previously described in mouse models-amyloid-ß trimers, Aß*56 and amyloid-ß dimers-in brain tissue from 75 cognitively intact individuals, ranging from young children to the elderly, and 58 impaired subjects with mild cognitive impairment or probable Alzheimer's disease. As in mouse models, where amyloid-ß trimers appear to be the fundamental amyloid-ß assembly unit of Aß*56 and are present in young mice prior to memory decline, amyloid-ß trimers in humans were present in children and adolescents; their levels rose gradually with age and were significantly above baseline in subjects in their 70s. Aß*56 levels were negligible in children and young adults, rose significantly above baseline in subjects in their 40s and increased steadily thereafter. Amyloid-ß dimers were undetectable until subjects were in their 60s; their levels then increased sharply and correlated with plaque load. Remarkably, in cognitively intact individuals we found strong positive correlations between Aß*56 and two pathological forms of soluble tau (tau-CP13 and tau-Alz50), and negative correlations between Aß*56 and two postsynaptic proteins (drebrin and fyn kinase), but none between amyloid-ß dimers or amyloid-ß trimers and tau or synaptic proteins. Comparing impaired with age-matched unimpaired subjects, we found the highest levels of amyloid-ß dimers, but the lowest levels of Aß*56 and amyloid-ß trimers, in subjects with probable Alzheimer's disease. In conclusion, in cognitively normal adults Aß*56 increased ahead of amyloid-ß dimers or amyloid-ß trimers, and pathological tau proteins and postsynaptic proteins correlated with Aß*56, but not amyloid-ß dimers or amyloid-ß trimers. We propose that Aß*56 may play a pathogenic role very early in the pathogenesis of Alzheimer's disease.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Envelhecimento/fisiologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Química Encefálica/fisiologia , Criança , Pré-Escolar , Cognição/fisiologia , Estudos de Coortes , Estudos Transversais , Feminino , Seguimentos , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Placa Amiloide/etiologia , Placa Amiloide/patologia , Multimerização Proteica , Adulto Jovem
12.
Front Aging ; 4: 1170434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168843

RESUMO

Introduction: Doxorubicin (DOX), a chemotherapeutic drug, induces senescence and increases the secretion of senescence-associated secretory phenotype (SASP) in endothelial cells (ECs), which contributes to DOX-induced inflammaging. Metformin, an anti-diabetic drug, demonstrates senomorphic effects on different models of senescence. However, the effects of metformin on DOX-induced endothelial senescence have not been reported before. Senescent ECs exhibit a hyper-inflammatory response to lipopolysachharide (LPS). Therefore, in our current work, we identified the effects of metformin on DOX-induced endothelial senescence and LPS-induced hyper-inflammation in senescent ECs. Methods: ECs were treated with DOX ± metformin for 24 h followed by 72 h incubation without DOX to establish senescence. Effects of metformin on senescence markers expression, SA-ß-gal activity, and SASP secretion were assessed. To delineate the molecular mechanisms, the effects of metformin on major signaling pathways were determined. The effect of LPS ± metformin was determined by stimulating both senescent and non-senescent ECs with LPS for an additional 24 h. Results: Metformin corrected DOX-induced upregulation of senescence markers and decreased the secretion of SASP factors and adhesion molecules. These effects were associated with a significant inhibition of the JNK and NF-κB pathway. A significant hyper-inflammatory response to LPS was observed in DOX-induced senescent ECs compared to non-senescent ECs. Metformin blunted LPS-induced upregulation of pro-inflammatory SASP factors. Conclusion: Our study demonstrates that metformin mitigates DOX-induced endothelial senescence phenotype and ameliorates the hyper-inflammatory response to LPS. These findings suggest that metformin may protect against DOX-induced vascular aging and endothelial dysfunction and ameliorate infection-induced hyper-inflammation in DOX-treated cancer survivors.

13.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36986490

RESUMO

Sex is a salient risk factor in the development of doxorubicin-induced cardiotoxicity. Sex differences in the heart's ability to respond to hypertrophic stimuli in doxorubicin-exposed animals have not been reported. We identified the sexual dimorphic effects of isoproterenol in mice pre-exposed to doxorubicin. Male and female intact or gonadectomized C57BL/6N mice underwent five weekly intraperitoneal injections of 4 mg/kg doxorubicin followed by a five-week recovery period. Fourteen days of subcutaneous isoproterenol injections (10 mg/kg/day) were administered after the recovery period. Echocardiography was used to assess heart function one and five weeks after the last doxorubicin injection and on the fourteenth day of isoproterenol treatment. Thereafter, mice were euthanized, and the hearts were weighed and processed for histopathology and gene expression analysis. Doxorubicin did not produce overt cardiac dysfunction in male or female mice before starting isoproterenol treatment. The chronotropic response to a single isoproterenol injection was blunted by doxorubicin, but the inotropic response was maintained in both males and females. Pre-exposure to doxorubicin caused cardiac atrophy in both control and isoproterenol-treated male mice but not in female mice. Counterintuitively, pre-exposure to doxorubicin abrogated isoproterenol-induced cardiac fibrosis. However, there were no sex differences in the expression of markers of pathological hypertrophy, fibrosis, or inflammation. Gonadectomy did not reverse the sexually dimorphic effects of doxorubicin. Additionally, pre-exposure to doxorubicin abrogated the hypertrophic response to isoproterenol in castrated male mice but not in ovariectomized female mice. Therefore, pre-exposure to doxorubicin caused male-specific cardiac atrophy that persisted after isoproterenol treatment, which could not be prevented by gonadectomy.

14.
Biomed Pharmacother ; 164: 114907, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37247463

RESUMO

Carfilzomib (CFZ) is a proteasome inhibitor approved for relapsed/refractory multiple myeloma (MM) but its clinical use is limited by cardiovascular toxicity. The mechanisms of CFZ-induced cardiovascular toxicity are not fully understood but endothelial dysfunction may be a common denominator. Here, we first characterized the direct toxic effects of CFZ on endothelial cells (HUVECs and EA.hy926 cells) and tested whether SGLT2 inhibitors, known to have cardioprotective effects, can protect against CFZ-induced toxicity. To determine the chemotherapeutic effect of CFZ in the presence of SGLT2 inhibitors, MM and lymphoma cells were treated with CFZ with or without canagliflozin. CFZ decreased cell viability and induced apoptotic cell death in endothelial cells in a concentration-dependent manner. CFZ also upregulated ICAM-1 and VCAM-1 and downregulated VEGFR-2. These effects were associated with the activation of Akt and MAPK pathways, inhibition of p70s6k, and downregulation of AMPK. Canagliflozin, but not empagliflozin or dapagliflozin, protected endothelial cells from CFZ-induced apoptosis. Mechanistically, canagliflozin abrogated CFZ-induced JNK activation and AMPK inhibition. AICAR (an AMPK activator) protected from CFZ-induced apoptosis, and compound C (an AMPK inhibitor) abrogated the protective effect of canagliflozin, strongly suggesting that AMPK mediates these effects. Canagliflozin did not interfere with the anticancer effect of CFZ in cancer cells. In conclusion, our findings demonstrate for the first time the direct toxic effects of CFZ in endothelial cells and the associated signaling changes. Canagliflozin abrogated the apoptotic effects of CFZ in endothelial cells in an AMPK-dependent mechanism, without interfering with its cytotoxicity in cancer cells.


Assuntos
Canagliflozina , Inibidores do Transportador 2 de Sódio-Glicose , Canagliflozina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Células Endoteliais/metabolismo , Apoptose
15.
Cells ; 11(13)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805077

RESUMO

Doxorubicin (DOX) induces endothelial cell (EC) senescence, which contributes to endothelial dysfunction and cardiovascular complications. Senolytic drugs selectively eliminate senescent cells to ameliorate senescence-mediated pathologies. Previous studies have demonstrated differences between immortalized and primary EC models in some characteristics. However, the response of DOX-induced senescent ECs to senolytics has not been determined across these two models. In the present work, we first established a comparative characterization of DOX-induced senescence phenotypes in immortalized EA.hy926 endothelial-derived cells and primary human umbilical vein EC (HUVECs). Thereafter, we evaluated the senolytic activity of four senolytics across both ECs. Following the DOX treatment, both EA.hy926 and HUVECs shared similar senescence phenotypes characterized by upregulated senescence markers, increased SA-ß-gal activity, cell cycle arrest, and elevated expression of the senescence-associated secretory phenotype (SASP). The potentially senolytic drugs dasatinib, quercetin, and fisetin demonstrated a lack of selectivity against DOX-induced senescent EA.hy926 cells and HUVECs. However, ABT-263 (Navitoclax) selectively induced the apoptosis of DOX-induced senescent HUVECs but not EA.hy926 cells. Mechanistically, DOX-treated EA.hy926 cells and HUVECs demonstrated differential expression levels of the BCL-2 family proteins. In conclusion, both EA.hy926 cells and HUVECs demonstrate similar DOX-induced senescence phenotypes but they respond differently to ABT-263, presumably due to the different expression levels of BCL-2 family proteins.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Senoterapia , Compostos de Anilina , Células Endoteliais da Veia Umbilical Humana , Humanos , Fenótipo , Sulfonamidas
16.
Front Cardiovasc Med ; 9: 742193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402534

RESUMO

Hypertension is the most significant risk factor for heart failure in doxorubicin (DOX)-treated childhood cancer survivors. We previously developed a two-hit mouse model of juvenile DOX-induced latent cardiotoxicity that is exacerbated by adult-onset angiotensin II (ANGII)-induced hypertension. It is still not known how juvenile DOX-induced latent cardiotoxicity would predispose the heart to pathologic stimuli that do not cause hypertension. Our main objective is to determine the cardiac effects of ANGII (a hypertensive pathologic stimulus) and isoproterenol (ISO, a non-hypertensive pathologic stimulus) in adult mice pre-exposed to DOX as juveniles. Five-week-old male C57BL/6N mice were administered DOX (4 mg/kg/week) or saline for 3 weeks and then allowed to recover for 5 weeks. Thereafter, mice were administered either ANGII (1.4 mg/kg/day) or ISO (10 mg/kg/day) for 14 days. Juvenile exposure to DOX abrogated the hypertrophic response to both ANGII and ISO, while it failed to correct ANGII- and ISO-induced upregulation in the hypertrophic markers, ANP and BNP. ANGII, but not ISO, worsened cardiac function and exacerbated cardiac fibrosis in DOX-exposed mice as measured by echocardiography and histopathology, respectively. The adverse cardiac remodeling in the DOX/ANGII group was associated with a marked upregulation in several inflammatory and fibrotic markers and altered expression of Ace, a critical enzyme in the RAAS. In conclusion, juvenile exposure to DOX causes latent cardiotoxicity that predisposes the heart to a hypertensive pathologic stimulus (ANGII) more than a non-hypertensive stimulus (ISO), mirroring the clinical scenario of worse cardiovascular outcome in hypertensive childhood cancer survivors.

17.
Drug Dev Res ; 72(1): 4-16, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25530654

RESUMO

Pharmaceutical researchers must evaluate vast numbers of protein sequences and formulate innovative strategies for identifying valid targets and discovering leads against them as a way of accelerating drug discovery. The ever increasing number and diversity of novel protein sequences identified by genomic sequencing projects and the success of worldwide structural genomics initiatives have spurred great interest and impetus in the development of methods for accurate, computationally empowered protein function prediction and active site identification. Previously, in the absence of direct experimental evidence, homology-based protein function annotation remained the gold-standard for in silico analysis and prediction of protein function. However, with the continued exponential expansion of sequence databases, this approach is not always applicable, as fewer query protein sequences demonstrate significant homology to protein gene products of known function. As a result, several non-homology based methods for protein function prediction that are based on sequence features, structure, evolution, biochemical and genetic knowledge have emerged. Herein, we review current bioinformatic programs and approaches for protein function prediction/annotation and discuss their integration into drug discovery initiatives. The development of such methods to annotate protein functional sites and their application to large protein functional families is crucial to successfully utilizing the vast amounts of genomic sequence information available to drug discovery and development processes.

18.
Biochem J ; 418(1): 103-12, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18937643

RESUMO

The inducible form of nitric oxide synthase (NOS2) plays an important role in sepsis incurred as a result of infection with Gram-negative bacteria that elaborate endotoxin. The HMGA1 (high-mobility group A1) architectural transcription factor facilitates NOS2 induction by binding a specific AT-rich Oct (octamer) sequence in the core NOS2 promoter via AT-hook motifs. The small-molecule MGB (minor-groove binder) netropsin selectively targets AT-rich DNA sequences and can interfere with transcription factor binding. We therefore hypothesized that netropsin would improve survival from murine endotoxaemia by attenuating NOS2 induction through interference with HMGA1 DNA binding to the core NOS2 promoter. Netropsin improved survival from endotoxaemia in wild-type mice, yet not in NOS2-deficient mice, supporting an important role for NOS2 in the beneficial effects of MGB administration. Netropsin significantly attenuated NOS2 promoter activity in macrophage transient transfection studies and the AT-rich HMGA1 DNA-binding site was critical for this effect. EMSAs (electrophoretic mobility-shift assays) demonstrated that netropsin interferes with HMGA1 NOS2 promoter binding and NMR spectroscopy was undertaken to characterize this disruption. Chemical shift perturbation analysis identified that netropsin effectively competes both HMGA1 DNA-binding AT-hooks from the AT-rich NOS2 promoter sequence. Furthermore, NOESY data identified direct molecular interactions between netropsin and A/T base pairs within the NOS2 promoter HMGA1-binding site. Finally, we determined a structure of the netropsin/NOS2 promoter Oct site complex from molecular modelling and dynamics calculations. These findings represent important steps toward refined structure-based ligand design of novel compounds for therapeutic benefit that can selectively target key regulatory regions within genes that are important for the development of critical illness.


Assuntos
Endotoxemia/tratamento farmacológico , Endotoxemia/metabolismo , Proteínas HMGA/metabolismo , Netropsina/uso terapêutico , Óxido Nítrico Sintase Tipo II/metabolismo , Regiões Promotoras Genéticas/genética , Animais , Sítios de Ligação , Linhagem Celular , DNA/genética , DNA/metabolismo , Endotoxemia/genética , Inibidores Enzimáticos/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/genética , Ressonância Magnética Nuclear Biomolecular , Fatores de Transcrição de Octâmero/química , Fatores de Transcrição de Octâmero/metabolismo , Ligação Proteica , Taxa de Sobrevida , Temperatura de Transição
19.
PLoS One ; 15(7): e0232507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645007

RESUMO

Sex-related differences in cardiovascular diseases are highly complex in humans and model-dependent in experimental laboratory animals. The objective of this work was to comprehensively investigate key sex differences in the response to acute and prolonged adrenergic stimulation in C57Bl/6NCrl mice. Cardiac function was assessed by trans-thoracic echocardiography before and after acute adrenergic stimulation (a single sub-cutaneous dose of isoproterenol 10 mg/kg) in 15 weeks old male and female C57Bl/6NCrl mice. Thereafter, prolonged adrenergic stimulation was achieved by sub-cutaneous injections of isoproterenol 10 mg/kg/day for 14 days in male and female mice. Cardiac function and morphometry were assessed by trans-thoracic echocardiography on the 15th day. Thereafter, the mice were euthanized, and the hearts were collected. Histopathological analysis of myocardial tissue was performed after staining with hematoxylin & eosin, Masson's trichrome and MAC-2 antibody. Gene expression of remodeling and fibrotic markers was assessed by real-time PCR. Cardiac function and morphometry were also measured before and after isoproterenol 10 mg/kg/day for 14 days in groups of gonadectomized male and female mice and sham-operated controls. In the current work, there were no statistically significant differences in the positive inotropic and chronotropic effects of isoproterenol between male and female C57Bl/6NCrl. After prolonged adrenergic stimulation, there was similar degree of cardiac dysfunction, cardiac hypertrophy, and myocardial fibrosis in male and female mice. Similarly, prolonged isoproterenol administration induced hypertrophic and fibrotic genes in hearts of male and female mice to the same extent. Intriguingly, gonadectomy of male and female mice did not have a significant impact on isoproterenol-induced cardiac dysfunction as compared to sham-operated animals. The current work demonstrated lack of significant sex-related differences in isoproterenol-induced cardiac hypertrophy, dysfunction, and fibrosis in C57Bl/6NCrl mice. This study suggests that female sex may not be sufficient to protect the heart in this model of isoproterenol-induced cardiac dysfunction and underscores the notion that sexual dimorphism in cardiovascular diseases is highly model-dependent.


Assuntos
Cardiopatias/fisiopatologia , Caracteres Sexuais , Animais , Biomarcadores/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Feminino , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Isoproterenol/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia
20.
Neurochem Res ; 34(6): 1138-49, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19082883

RESUMO

Xanomeline is thought to be a M1/M4 functionally selective agonist at muscarinic receptors. We have previously demonstrated that it binds in a unique manner at the M1 receptor. In the current study, we examined the ability of xanomeline to bind to the M3 receptor and determined the long-term consequences of this mode of binding in Chinese hamster ovary cells expressing M3 receptors. Xanomeline binds in a reversible and wash-resistant manner at the M3 receptor and elicits a functional response under both conditions. Long-term exposure to xanomeline resulted in changes in the binding profile of [(3)H]NMS and a decrease in cell-surface receptor density. Additionally, pretreatment with xanomeline was associated with antagonism of the functional response to subsequent stimulation by conventional agonists. Our results indicate that xanomeline binds to and activates the M3 muscarinic receptor in a wash-resistant manner, and that this type of binding results in time-dependent receptor regulation.


Assuntos
Agonistas Muscarínicos/farmacologia , Piridinas/farmacologia , Receptor Muscarínico M3/metabolismo , Tiadiazóis/farmacologia , Animais , Ligação Competitiva , Células CHO , Cricetinae , Cricetulus , Hidrólise , Fosfatos de Inositol/biossíntese , Antagonistas Muscarínicos/farmacologia , N-Metilescopolamina/farmacologia , Fosfatidilinositóis/metabolismo , Ensaio Radioligante , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/antagonistas & inibidores , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA