Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 27(6): 934-946, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28348165

RESUMO

DNA methylation is an essential epigenetic modification, present in both unique DNA sequences and repetitive elements, but its exact function in repetitive elements remains obscure. Here, we describe the genome-wide comparative analysis of the 5mC, 5hmC, 5fC, and 5caC profiles of repetitive elements in mouse embryonic fibroblasts and mouse embryonic stem cells. We provide evidence for distinct and highly specific DNA methylation/oxidation patterns of the repetitive elements in both cell types, which mainly affect CA repeats and evolutionarily conserved mouse-specific transposable elements including IAP-LTRs, SINEs B1m/B2m, and L1Md-LINEs. DNA methylation controls the expression of these retroelements, which are clustered at specific locations in the mouse genome. We show that TDG is implicated in the regulation of their unique DNA methylation/oxidation signatures and their dynamics. Our data suggest the existence of a novel epigenetic code for the most recently acquired evolutionarily conserved repeats that could play a major role in cell differentiation.


Assuntos
Metilação de DNA , Epigênese Genética , Fibroblastos/metabolismo , Genoma , Células-Tronco Embrionárias Murinas/metabolismo , Sequências Repetitivas de Ácido Nucleico , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Diferenciação Celular , Citosina/análogos & derivados , Citosina/metabolismo , Elementos de DNA Transponíveis , Fibroblastos/citologia , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Cultura Primária de Células , Timina DNA Glicosilase/genética , Timina DNA Glicosilase/metabolismo
2.
Brain ; 142(11): 3636-3654, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599329

RESUMO

Accumulating data support the role of tau pathology in cognitive decline in ageing and Alzheimer's disease, but underlying mechanisms remain ill-defined. Interestingly, ageing and Alzheimer's disease have been associated with an abnormal upregulation of adenosine A2A receptor (A2AR), a fine tuner of synaptic plasticity. However, the link between A2AR signalling and tau pathology has remained largely unexplored. In the present study, we report for the first time a significant upregulation of A2AR in patients suffering from frontotemporal lobar degeneration with the MAPT P301L mutation. To model these alterations, we induced neuronal A2AR upregulation in a tauopathy mouse model (THY-Tau22) using a new conditional strain allowing forebrain overexpression of the receptor. We found that neuronal A2AR upregulation increases tau hyperphosphorylation, potentiating the onset of tau-induced memory deficits. This detrimental effect was linked to a singular microglial signature as revealed by RNA sequencing analysis. In particular, we found that A2AR overexpression in THY-Tau22 mice led to the hippocampal upregulation of C1q complement protein-also observed in patients with frontotemporal lobar degeneration-and correlated with the loss of glutamatergic synapses, likely underlying the observed memory deficits. These data reveal a key impact of overactive neuronal A2AR in the onset of synaptic loss in tauopathies, paving the way for new therapeutic approaches.


Assuntos
Complemento C1q/metabolismo , Neurônios/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Sinapses/patologia , Tauopatias/genética , Tauopatias/patologia , Animais , Autopsia , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Camundongos , Camundongos Transgênicos , Mutação , Aprendizagem Espacial , Tauopatias/psicologia , Proteínas tau/genética
3.
bioRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38076793

RESUMO

The recognition of core promoter sequences by the general transcription factor TFIID is the first step in the process of RNA polymerase II (Pol II) transcription initiation. Metazoan holo-TFIID is composed of the TATA binding protein (TBP) and of 13 TBP associated factors (TAFs). Inducible Taf7 knock out (KO) results in the formation of a Taf7-less TFIID complex, while Taf10 KO leads to serious defects within the TFIID assembly pathway. Either TAF7 or TAF10 depletions correlate with the detected TAF occupancy changes at promoters, and with the distinct phenotype severities observed in mouse embryonic stem cells or mouse embryos. Surprisingly however, under either Taf7 or Taf10 deletion conditions, TBP is still associated to the chromatin, and no major changes are observed in nascent Pol II transcription. Thus, partially assembled TFIID complexes can sustain Pol II transcription initiation, but cannot replace holo-TFIID over several cell divisions and/or development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA