Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(25): 6458-6463, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29866843

RESUMO

The enteric nervous system (ENS) is crucial for essential gastrointestinal physiologic functions such as motility, fluid secretion, and blood flow. The gut is colonized by trillions of bacteria that regulate host production of several signaling molecules including serotonin (5-HT) and other hormones and neurotransmitters. Approximately 90% of 5-HT originates from the intestine, and activation of the 5-HT4 receptor in the ENS has been linked to adult neurogenesis and neuroprotection. Here, we tested the hypothesis that the gut microbiota could induce maturation of the adult ENS through release of 5-HT and activation of 5-HT4 receptors. Colonization of germ-free mice with a microbiota from conventionally raised mice modified the neuroanatomy of the ENS and increased intestinal transit rates, which was associated with neuronal and mucosal 5-HT production and the proliferation of enteric neuronal progenitors in the adult intestine. Pharmacological modulation of the 5-HT4 receptor, as well as depletion of endogenous 5-HT, identified a mechanistic link between the gut microbiota and maturation of the adult ENS through the release of 5-HT and activation of the 5-HT4 receptor. Taken together, these findings show that the microbiota modulates the anatomy of the adult ENS in a 5-HT-dependent fashion with concomitant changes in intestinal transit.


Assuntos
Sistema Nervoso Entérico/microbiologia , Sistema Nervoso Entérico/fisiologia , Microbioma Gastrointestinal/fisiologia , Intestino Delgado/microbiologia , Serotonina/metabolismo , Animais , Sistema Nervoso Entérico/metabolismo , Feminino , Motilidade Gastrointestinal/fisiologia , Intestino Delgado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/fisiologia , Neurogênese/fisiologia , Neurônios/metabolismo , Neurônios/microbiologia , Receptores 5-HT4 de Serotonina/metabolismo
2.
Rev Endocr Metab Disord ; 20(4): 427-438, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31656993

RESUMO

The regulation of glycemia is under a tight neuronal detection of glucose levels performed by the gut-brain axis and an efficient efferent neuronal message sent to the peripheral organs, as the pancreas to induce insulin and inhibit glucagon secretions. The neuronal detection of glucose levels is performed by the autonomic nervous system including the enteric nervous system and the vagus nerve innervating the gastro-intestinal tractus, from the mouth to the anus. A dysregulation of this detection leads to the one of the most important current health issue around the world i.e. diabetes mellitus. Furthemore, the consequences of diabetes mellitus on neuronal homeostasis and activities participate to the aggravation of the disease establishing a viscious circle. Prokaryotic cells as bacteria, reside in our gut. The strong relationship between prokaryotic cells and our eukaryotic cells has been established long ago, and prokaryotic and eukaryotic cells in our body have evolved synbiotically. For the last decades, studies demonstrated the critical role of the gut microbiota on the metabolic control and how its shift can induce diseases such as diabetes. Despite an important increase of knowledge, few is known about 1) how the gut microbiota influences the neuronal detection of glucose and 2) how the diabetes mellitus-induced gut microbiota shift observed participates to the alterations of autonomic nervous system and the gut-brain axis activity.


Assuntos
Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiologia , Animais , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/microbiologia , Glucose/metabolismo , Humanos , Sistema Nervoso Periférico/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 315(5): G671-G684, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30070580

RESUMO

Endogenous glucagon-like peptide-1 (GLP-1) regulates glucose-induced insulin secretion through both direct ß-cell-dependent and indirect gut-brain axis-dependent pathways. However, little is known about the mode of action of the GLP-1 receptor agonist lixisenatide. We studied the effects of lixisenatide (intraperitoneal injection) on insulin secretion, gastric emptying, vagus nerve activity, and brain c-Fos activation in naive, chronically vagotomized, GLP-1 receptor knockout (KO), high-fat diet-fed diabetic mice, or db/db mice. Lixisenatide dose-dependently increased oral glucose-induced insulin secretion that is correlated with a decrease of glycemia. In addition, lixisenatide inhibited gastric emptying. These effects of lixisenatide were abolished in vagotomized mice, characterized by a delay of gastric emptying and in GLP-1 receptor KO mice. Intraperitoneal administration of lixisenatide also increased the vagus nerve firing rate and the number of c-Fos-labeled neurons in the nucleus tractus solitarius (NTS) of the brainstem. In diabetic mouse models, lixisenatide increased the firing rate of the vagus nerve when administrated simultaneously to an intraduodenal glucose. It increased also insulin secretion and c-Fos activation in the NTS. Altogether, our findings show that lixisenatide requires a functional vagus nerve and neuronal gut-brain-islets axis as well as the GLP-1 receptor to regulate glucose-induced insulin secretion in healthy and diabetic mice. NEW & NOTEWORTHY Lixisenatide is an agonist of the glucagon-like protein (GLP)-1 receptor, modified from exendin 4, used to treat type 2 diabetic patients. However, whereas the mode of action of endogenous GLP-1 is extensively studied, the mode of action of the GLP-1 analog lixisenatide is poorly understood. Here, we demonstrated that lixisenatide activates the vagus nerve and recruits the gut-brain axis through the GLP-1 receptor to decrease gastric emptying and stimulate insulin secretion to improve glycemia.


Assuntos
Tronco Encefálico/fisiopatologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Secreção de Insulina , Intestinos/fisiopatologia , Peptídeos/farmacologia , Nervo Vago/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Esvaziamento Gástrico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/uso terapêutico , Nervo Vago/fisiopatologia
4.
Acta Diabetol ; 59(2): 243-258, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34648088

RESUMO

The gut-brain-beta cell glucagon-like peptide-1 (GLP-1)-dependent axis and the clock genes both control insulin secretion. Evidence shows that a keystone of this molecular interaction could be the gut microbiota. We analyzed in mice the circadian profile of GLP-1 sensitivity on insulin secretion and the impact of the autonomic neuropathy, antibiotic treated in different diabetic mouse models and in germ-free colonized mice. We show that GLP-1sensitivity is maximal during the dark feeding period, i.e., the postprandial state. Coincidently, the ileum expression of GLP-1 receptor and peripherin is increased and tightly correlated with a subset of clock gene. Since both are markers of enteric neurons, it suggests a role in the gut-brain-beta cell GLP-1-dependent axis. We evaluated the importance of gut microbiota dysbiosis and found that the abundance of ileum bacteria, particularly Ruminococcaceae and Lachnospiraceae, oscillated diurnally, with a maximum during the dark period, along with expression patterns of a subset of clock genes. This diurnal pattern of circadian gene expression and Lachnospiraceae abundance was also observed in two separate mouse models of gut microbiota dysbiosis and of autonomic neuropathy with impaired GLP-1 sensitivity (1.high-fat diet-fed type 2 diabetic, 2.antibiotic-treated/germ-free mice). Our data show that GLP-1 sensitivity relies on specific pattern of intestinal clock gene expression and specific gut bacteria. This new statement opens opportunities to treat diabetic patient with GLP-1-based therapies by using on a possible pre/probiotic co-treatment to improve the time-dependent efficiency of these therapies.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animais , Diabetes Mellitus Tipo 2/genética , Disbiose , Peptídeo 1 Semelhante ao Glucagon , Humanos , Camundongos
5.
Acta Diabetol ; 58(7): 881-897, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33723651

RESUMO

AIMS: Liraglutide controls type 2 diabetes (T2D) and inflammation. Gut microbiota regulates the immune system and causes at least in part type 2 diabetes. We here evaluated whether liraglutide regulates T2D through both gut microbiota and immunity in dysmetabolic mice. METHODS: Diet-induced dysmetabolic mice were treated for 14 days with intraperitoneal injection of liraglutide (100 µg/kg) or with vehicle or Exendin 4 (10 µg/kg) as controls. Various metabolic parameters, the intestinal immune cells were characterized and the 16SrDNA gene sequenced from the gut. The causal role of gut microbiota was shown using large spectrum antibiotics and by colonization of germ-free mice with the gut microbiota from treated mice. RESULTS: Besides, the expected metabolic impacts liraglutide treatment induced a specific gut microbiota specific signature when compared to vehicle or Ex4-treated mice. However, liraglutide only increased glucose-induced insulin secretion, reduced the frequency of Th1 lymphocytes, and increased that of TReg in the intestine. These effects were abolished by a concomitant antibiotic treatment. Colonization of germ-free mice with gut microbiota from liraglutide-treated diabetic mice improved glucose-induced insulin secretion and regulated the intestinal immune system differently from what observed in germ-free mice colonized with microbiota from non-treated diabetic mice. CONCLUSIONS: Altogether, our result demonstrated first the influence of liraglutide on gut microbiota and the intestinal immune system which could at least in part control glucose-induced insulin secretion.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Liraglutida/farmacologia , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/microbiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
J Dent ; 79: 53-60, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30292825

RESUMO

OBJECTIVE: Elite athletes are prone to develop oral diseases, which could increase the risk for injuries. The aim of this study was to evaluate the oral health and the composition of oral microbiota of elite rugby players compared to the general population. METHODS: We set up a case-control study by screening 24 professional rugby players (PRG) and 22 control patients (CG) for dental and gingival examinations and performed a taxonomic analysis and a predicted functional analysis of oral microbiota. RESULTS: The Decay, Missing and Filled (DMF) teeth index (5.54 ± 6.18 versus 2.14 ± 3.01; p = 0.01) and the frequency of gingivitis (58,33% versus 13.63%) were significantly increased in PRG compared to CG. PRG were characterized by a dysbiotic oral microbiota (Shannon Index: 3.32 ± 0.62 in PRG versus 3.79 ± 0.68 in CG; p = 0.03) with an increase of Streptococcus (58.43 ± 16.84 versus 42.60 ± 17.45; p = 0.005), the main genus implicated in caries. Predicted metagenomics of oral microbiota in rugby players was suggestive of a cariogenic metagenome favourable to the development of caries. CONCLUSIONS: Our study shows that the oral health of PRG was poorer than the general population. PRG are characterized by a dysbiotic oral microbiota with an increase of the relative abundance of Streptococcus genus, positively correlated to the weight and negatively correlated to the diversity of oral microbiota. CLINICAL SIGNIFICANCE: Dental screening should be included in the medical follow-up of professional rugby players as a part of their health management. New strategies such as using probiotics like Lactobacillus could help to control the dysbiosis of oral microbiota.


Assuntos
Atletas , Microbiota , Saúde Bucal , Estudos de Casos e Controles , Futebol Americano , Humanos , Esportes
7.
Cell Metab ; 25(5): 1075-1090.e5, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467926

RESUMO

Glucagon-like peptide-1 (GLP-1)-based therapies control glycemia in type 2 diabetic (T2D) patients. However, in some patients the treatment must be discontinued, defining a state of GLP-1 resistance. In animal models we identified a specific set of ileum bacteria impairing the GLP-1-activated gut-brain axis for the control of insulin secretion and gastric emptying. Using prediction algorithms, we identified bacterial pathways related to amino acid metabolism and transport system modules associated to GLP-1 resistance. The conventionalization of germ-free mice demonstrated their role in enteric neuron biology and the gut-brain-periphery axis. Altogether, insulin secretion and gastric emptying require functional GLP-1 receptor and neuronal nitric oxide synthase in the enteric nervous system within a eubiotic gut microbiota environment. Our data open a novel route to improve GLP-1-based therapies.


Assuntos
Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Disbiose/metabolismo , Sistema Nervoso Entérico/metabolismo , Microbioma Gastrointestinal , Óxido Nítrico/metabolismo , Animais , Encéfalo/patologia , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/patologia , Disbiose/microbiologia , Disbiose/patologia , Sistema Nervoso Entérico/microbiologia , Sistema Nervoso Entérico/patologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA