Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vox Sang ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048115

RESUMO

BACKGROUND AND OBJECTIVES: Plasmodium species are naturally transmitted by Anopheles mosquitos. The parasite infects red blood cells (RBCs) and can be transfused with blood products. In non-endemic areas, the main risk of infection arises from travellers coming back and people immigrating from malaria-endemic regions. Endemic countries face a permanent risk of infection from transfusion-transmitted malaria (TTM). TTM may cause life-threatening complications in patients dependent on blood donations. This study aimed to investigate the efficacy of Plasmodium falciparum inactivation in RBC units by treatment with short-wavelength ultraviolet C (UVC) light in the absence of photochemical additives. MATERIALS AND METHODS: RBC units were spiked with P. falciparum to a parasite density of 0.1%-1% and irradiated with up to 4.5 J/cm2 UVC. The parasite density of UVC-treated dilution series and untreated controls were compared over 3 weeks after irradiation. RESULTS: The lowest dose of 1.5 J/cm2 UVC led to a 3.1 log reduction in parasite load compared with the untreated control. The inactivation capacity was dose-dependent. Strikingly, 4.5 J/cm2 led to ≥5.3 log unit reduction, which was equivalent to a complete inactivation in two out of three experiments. CONCLUSION: Pathogen reduction with UVC light was previously shown to be effective for different bacteria and viruses, but the inactivation of parasites in RBC concentrates was not addressed until now. The present study provides evidence for significant inactivation of P. falciparum-infected RBCs by UVC light.

2.
Vox Sang ; 119(8): 827-833, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38699884

RESUMO

BACKGROUND AND OBJECTIVES: West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne flaviviruses (Flaviviridae) that originated in Africa, have expanded their geographical range during the last decades and caused documented infections in Europe in the last years. Acute WNV and USUV infections have been detected in asymptomatic blood donors by nucleic acid testing. Thus, inactivation of both viral pathogens before blood transfusion is necessary to ensure blood product safety. This study aimed to investigate the efficacy of the THERAFLEX UV-Platelets system to inactivate WNV and USUV in platelet concentrates (PCs). MATERIALS AND METHODS: Plasma-reduced PCs were spiked with the virus suspension. Spiked PC samples were taken after spiking (load and hold sample) and after UVC illumination on the Macotronic UV illumination machine with different light doses (0.05, 0.1, 0.15 and 0.2 (standard) J/cm2). Virus loads of WNV and USUV before and after illumination were measured by titration. RESULTS: Infectivity assays showed that UVC illumination inactivated WNV and USUV in a dose-dependent manner. At a UVC dose of 0.2 J/cm2, the WNV titre was reduced by a log10 factor of 3.59 ± 0.43 for NY99 (lineage 1) and 4.40 ± 0.29 for strain ED-I-33/18 (lineage 2). USUV titres were reduced at the same UVC dose by a log10 factor of 5.20 ± 0.70. CONCLUSIONS: Our results demonstrate that the THERAFLEX UV-Platelets procedure is an effective technology to inactivate WNV and USUV in contaminated PCs.


Assuntos
Plaquetas , Flavivirus , Raios Ultravioleta , Inativação de Vírus , Vírus do Nilo Ocidental , Humanos , Plaquetas/efeitos da radiação , Plaquetas/virologia , Vírus do Nilo Ocidental/efeitos da radiação , Inativação de Vírus/efeitos da radiação , Flavivirus/efeitos da radiação , Segurança do Sangue/métodos
3.
Vox Sang ; 119(8): 834-841, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38754952

RESUMO

BACKGROUND AND OBJECTIVES: Blood safety measures used by blood establishments to increase blood component safety can be validated using Transfusion-Relevant Bacterial Reference Strains (TRBRS). Ultra-cold storage conditions and manual preparation of the current TRBRS may restrict their practical use. To address this issue, the ISBT Transfusion-Transmitted Infectious Diseases Working Party's Bacterial Subgroup organized an international study to validate TRBRS in a user-friendly, lyophilised format. MATERIALS AND METHODS: Two bacterial strains Klebsiella pneumoniae PEI-B-P-08 and Staphylococcus aureus PEI-B-P-63 were manufactured as lyophilised material. The lyophilised bacteria were distributed to 11 different labs worldwide to assess the robustness for enumeration, identification and determination of growth kinetics in platelet concentrates (PCs). RESULTS: Production of lyophilised TRBRS had no impact on the growth properties compared with the traditional format. The new format allows a direct low-quantity spiking of approximately 30 bacteria in PCs for transfusion-relevant experiments. In addition, the lyophilised bacteria exhibit long-term stability across a broad temperature range and can even be directly rehydrated in PCs without losing viability. Interlaboratory comparative study demonstrated the robustness of the new format as 100% of spiked PC exhibited growth. CONCLUSION: Lyophilised TRBRS provide a user-friendly material for transfusion-related studies. TRBRS in the new format have improved features that may lead to a more frequent use in the quality control of transfusion-related safety measures in the future.


Assuntos
Liofilização , Klebsiella pneumoniae , Staphylococcus aureus , Liofilização/métodos , Humanos , Staphylococcus aureus/crescimento & desenvolvimento , Klebsiella pneumoniae/crescimento & desenvolvimento , Segurança do Sangue/métodos , Transfusão de Sangue/métodos , Transfusão de Sangue/normas , Plaquetas/microbiologia , Padrões de Referência , Preservação de Sangue/métodos
4.
Vox Sang ; 119(7): 693-701, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631895

RESUMO

BACKGROUND AND OBJECTIVES: Platelet concentrates (PC) are stored at 20-24°C to maintain platelet functionality, which may promote growth of contaminant bacteria. Alternatively, cold storage of PC limits bacterial growth; however, data related to proliferation of psychotrophic species in cold-stored PC (CSP) are scarce, which is addressed in this study. MATERIALS AND METHODS: Eight laboratories participated in this study with a pool/split approach. Two split PC units were spiked with ~25 colony forming units (CFU)/PC of Staphylococcus aureus, Klebsiella pneumoniae, Serratia liquefaciens, Pseudomonas fluorescens and Listeria monocytogenes. One unit was stored under agitation at 20-24°C/7 days while the second was stored at 1-6°C/no agitation for 21 days. PC were sampled periodically to determine bacterial loads. Five laboratories repeated the study with PC inoculated with lyophilized inocula (~30 CFU/mL) of S. aureus and K. pneumoniae. RESULTS: All species proliferated in PC stored at 20-24°C, reaching concentrations of ≤109 CFU/mL by day 7. Psychrotrophic P. fluorescens and S. liquefaciens proliferated in CSP to ~106 CFU/mL and ~105 CFU/mL on days 10 and 17 of storage, respectively, followed by L. monocytogenes, which reached ~102 CFU/mL on day 21. S. aureus and K. pneumoniae did not grow in CSP. CONCLUSION: Psychrotrophic bacteria, which are relatively rare contaminants in PC, proliferated in CSP, with P. fluorescens reaching clinically significant levels (≥105 CFU/mL) before day 14 of storage. Cold storage reduces bacterial risk of PC to levels comparable with RBC units. Safety of CSP could be further improved by implementing bacterial detection systems or pathogen reduction technologies if storage is beyond 10 days.


Assuntos
Plaquetas , Preservação de Sangue , Humanos , Plaquetas/microbiologia , Preservação de Sangue/métodos , Temperatura Baixa , Bactérias/crescimento & desenvolvimento
5.
Transfus Med Hemother ; 51(2): 76-83, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584696

RESUMO

Introduction: Bacterial contamination of blood products presumably occurs mainly during blood collection, starting from low initial concentrations of 10-100 colony-forming units (CFUs) per bag. As little is known about bacterial growth behavior and distribution in stored whole blood (WB) and WB-derived blood products, this study aims to provide data on this subject. Methods: WB units were inoculated with transfusion-relevant bacterial species (Acinetobacter baumannii, Bacillus cereus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Pseudomonas fluorescens, Serratia marcescens, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus dysgalactiae, Streptococcus pyogenes, Yersinia enterocolitica; n = 12 for each species), stored for 22-24 h at room temperature, and then centrifuged for separation into plasma, red blood cells (RBCs), and buffy coats (BCs). The latter were pooled with 3 random donor BCs and one unit of PAS-E each to yield plasma-reduced platelet concentrates (PCs). Samples for bacterial colony counting were collected after WB storage and immediately after blood component production. Sterility testing in PCs (n = 12 for each species) was performed by bacterial culture after 7 days of storage. Results: Bacterial growth in WB varied remarkably between donations and species. Streptococcus species produced the highest titers in WB, whereas Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas fluorescens did not multiply. Centrifugation resulted in preferential accumulation of bacteria in BCs, with titers of up to 3.5 × 103 CFU/mL in BCs and up to ≤0.9 × 103 CFU/mL in BC-derived PCs. Overall, 72/144 PCs (50%) tested positive for bacteria after storage. Sterility test results were species-dependent, ranging from 12 of 12 PCs tested positive for Streptococcus pyogenes to 1 of 12 PCs positive for Escherichia coli. Bacterial contamination of RBC and plasma units was much less common and was associated with higher initial bacterial counts in the parent WB units. Conclusions: Bacterial growth in WB is species-dependent and varies greatly between donations. Preferential accumulation of bacteria in BCs during manufacturing is a critical determinant of the contamination risk of BC-derived pooled PCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA