Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nucleic Acids Res ; 50(7): 4127-4147, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35325198

RESUMO

We report on higher-order G-quadruplex structures adopted by long promoter sequences obtained by an iterative integrated structural biology approach. Our approach uses quantitative biophysical tools (analytical ultracentrifugation, small-angle X-ray scattering, and circular dichroism spectroscopy) combined with modeling and molecular dynamics simulations, to derive self-consistent structural models. The formal resolution of our approach is 18 angstroms, but in some cases structural features of only a few nucleotides can be discerned. We report here five structures of long (34-70 nt) wild-type sequences selected from three cancer-related promoters: c-Myc, c-Kit and k-Ras. Each sequence studied has a unique structure. Three sequences form structures with two contiguous, stacked, G-quadruplex units. One longer sequence from c-Myc forms a structure with three contiguous stacked quadruplexes. A longer c-Kit sequence forms a quadruplex-hairpin structure. Each structure exhibits interfacial regions between stacked quadruplexes or novel loop geometries that are possible druggable targets. We also report methodological advances in our integrated structural biology approach, which now includes quantitative CD for counting stacked G-tetrads, DNaseI cleavage for hairpin detection and SAXS model refinement. Our results suggest that higher-order quadruplex assemblies may be a common feature within the genome, rather than simple single quadruplex structures.


Assuntos
Quadruplex G , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Dicroísmo Circular , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
Nucleic Acids Res ; 48(10): 5720-5734, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32083666

RESUMO

The structure of the 68 nt sequence with G-quadruplex forming potential within the hTERT promoter is disputed. One model features a structure with three stacked parallel G-quadruplex units, while another features an unusual duplex hairpin structure adjoined to two stacked parallel and antiparallel quadruplexes. We report here the results of an integrated structural biology study designed to distinguish between these possibilities. As part of our study, we designed a sequence with an optimized hairpin structure and show that its biophysical and biochemical properties are inconsistent with the structure formed by the hTERT wild-type sequence. By using circular dichroism, thermal denaturation, nuclear magnetic resonance spectroscopy, analytical ultracentrifugation, small-angle X-ray scattering, molecular dynamics simulations and a DNase I cleavage assay we found that the wild type hTERT core promoter folds into a stacked, three-parallel G-quadruplex structure. The hairpin structure is inconsistent with all of our experimental data obtained with the wild-type sequence. All-atom models for both structures were constructed using molecular dynamics simulations. These models accurately predicted the experimental hydrodynamic properties measured for each structure. We found with certainty that the wild-type hTERT promoter sequence does not form a hairpin structure in solution, but rather folds into a compact stacked three-G-quadruplex conformation.


Assuntos
Quadruplex G , Regiões Promotoras Genéticas , Telomerase/genética , Sequência de Bases , Dicroísmo Circular , DNA/química , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Desnaturação de Ácido Nucleico , Espalhamento a Baixo Ângulo , Difração de Raios X
3.
Nucleic Acids Res ; 48(9): 4976-4991, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32232414

RESUMO

The reaction mechanism by which the shelterin protein POT1 (Protection of Telomeres 1) unfolds human telomeric G-quadruplex structures is not fully understood. We report here kinetic, thermodynamic, hydrodynamic and computational studies that show that a conformational selection mechanism, in which POT1 binding is coupled to an obligatory unfolding reaction, is the most plausible mechanism. Stopped-flow kinetic and spectroscopic titration studies, along with isothermal calorimetry, were used to show that binding of the single-strand oligonucleotide d[TTAGGGTTAG] to POT1 is both fast (80 ms) and strong (-10.1 ± 0.3 kcal mol-1). In sharp contrast, kinetic studies showed the binding of POT1 to an initially folded 24 nt G-quadruplex structure is four orders of magnitude slower. Fluorescence, circular dichroism and analytical ultracentrifugation studies showed that POT1 binding is coupled to quadruplex unfolding, with a final complex with a stoichiometry of 2 POT1 per 24 nt DNA. The binding isotherm for the POT1-quadruplex interaction was sigmoidal, indicative of a complex reaction. A conformational selection model that includes equilibrium constants for both G-quadruplex unfolding and POT1 binding to the resultant single-strand provided an excellent quantitative fit to the experimental binding data. POT1 unfolded and bound to any conformational form of human telomeric G-quadruplex (antiparallel, hybrid, parallel monomers or a 48 nt sequence with two contiguous quadruplexes), but did not avidly interact with duplex DNA or with other G-quadruplex structures. Finally, molecular dynamics simulations provided a detailed structural model of a 2:1 POT1:DNA complex that is fully consistent with experimental biophysical results.


Assuntos
Quadruplex G , Proteínas de Ligação a Telômeros/metabolismo , Telômero/química , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Complexo Shelterina , Proteínas de Ligação a Telômeros/química , Termodinâmica
4.
Eur Respir J ; 57(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33303535

RESUMO

Cystic fibrosis (CF) is a life-shortening, multi-organ, autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most prominent clinical manifestation in CF is the development of progressive lung disease characterised by an intense, chronic inflammatory airway response that culminates in respiratory failure and, ultimately, death. In recent years, a new class of therapeutics that have the potential to correct the underlying defect in CF, known as CFTR modulators, have revolutionised the field. Despite the exciting success of these drugs, their impact on airway inflammation, and its long-term consequences, remains undetermined. In addition, studies querying the absolute requirement for infection as a driver of CF inflammation have challenged the traditional consensus on CF pathogenesis, and also emphasise the need to prioritise complementary anti-inflammatory treatments in CF. Macrophages, often overlooked in CF research despite their integral role in other chronic inflammatory pathologies, have increasingly become recognised as key players in the initiation, perpetuation and resolution of CF lung inflammation, perhaps as a direct result of CFTR dysfunction. These findings suggest that macrophages may be an important target for novel anti-inflammatory interventional strategies to effectively treat CF lung function decline. This review will consider evidence for the efficacy of anti-inflammatory drugs in the treatment of CF, the potential role of macrophages, and the significance of targeting these pathways at a time when rectifying the basic defect in CF, through use of novel CFTR modulator therapies, is becoming increasingly viable.


Assuntos
Fibrose Cística , Anti-Inflamatórios/uso terapêutico , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística , Humanos , Inflamação/tratamento farmacológico , Macrófagos
5.
PLoS Pathog ; 15(4): e1007694, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30978238

RESUMO

Pulmonary infections are a major global cause of morbidity, exacerbated by an increasing threat from antibiotic-resistant pathogens. In this context, therapeutic interventions aimed at protectively modulating host responses, to enhance defence against infection, take on ever greater significance. Pseudomonas aeruginosa is an important multidrug-resistant, opportunistic respiratory pathogen, the clearance of which can be enhanced in vivo by the innate immune modulatory properties of antimicrobial host defence peptides from the cathelicidin family, including human LL-37. Initially described primarily as bactericidal agents, cathelicidins are now recognised as multifunctional antimicrobial immunomodulators, modifying host responses to pathogens, but the key mechanisms involved in these protective functions are not yet defined. We demonstrate that P. aeruginosa infection of airway epithelial cells promotes extensive infected cell internalisation of LL-37, in a manner that is dependent upon epithelial cell interaction with live bacteria, but does not require bacterial Type 3 Secretion System (T3SS). Internalised LL-37 acts as a second signal to induce inflammasome activation in airway epithelial cells, which, in contrast to myeloid cells, are relatively unresponsive to P. aeruginosa. We demonstrate that this is mechanistically dependent upon cathepsin B release, and NLRP3-dependent activation of caspase 1. These result in LL-37-mediated release of IL-1ß and IL-18 in a manner that is synergistic with P. aeruginosa infection, and can induce caspase 1-dependent death of infected epithelial cells, and promote neutrophil chemotaxis. We propose that cathelicidin can therefore act as a second signal, required by P. aeruginosa infected epithelial cells to promote an inflammasome-mediated altruistic cell death of infection-compromised epithelial cells and act as a "fire alarm" to enhance rapid escalation of protective inflammatory responses to an uncontrolled infection. Understanding this novel modulatory role for cathelicidins, has the potential to inform development of novel therapeutic strategies to antibiotic-resistant pathogens, harnessing innate immunity as a complementation or alternative to current interventions.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Catelicidinas/farmacologia , Células Epiteliais/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Sistema Respiratório/imunologia , Animais , Caspase 1/metabolismo , Comunicação Celular , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo
6.
Protein Expr Purif ; 165: 105499, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541685

RESUMO

The protein ALL1 fused from chromosome 1q (AF1q) is overexpressed in a variety of cancers and acts to activate several signaling pathways that lead to oncogenesis. For example, AF1q has been shown to interact with T-cell Factor 7 (TCF7; also known as TCF1) from the Wnt/ß-catenin pathway resulting in the transcriptional activation of the CD44 and the enhancement of breast cancer metastasis. Despite the importance of AF1q in facilitating oncogenesis and metastasis, the structural and biophysical properties of AF1q remain largely unexplored due to the absence of a viable method for producing recombinant protein. Here, we report the overexpression of AF1q in E. coli as a fusion to a N-terminal His6-tag, which forms inclusion bodies (IBs) during expression. The AF1q protein was purified from IBs under denaturing conditions by immobilized metal affinity chromatography followed by a successful one-step dialysis refolding. Refolded AF1q was further purified to homogeneity by gel filtration chromatography resulting in an overall yield of 35 mg/L culture. Our nuclear magnetic resonance (NMR) and analytical ultracentrifugation (AUC) measurements reveal AF1q interacts with TCF7, specifically with TCF7's high-mobility group (HMG) domain (residues 154-237), which is, to our knowledge, the first biophysical characterization of the AF1q and TCF7 interaction.


Assuntos
Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Cromatografia de Afinidade , Clonagem Molecular , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Humanos , Espectroscopia de Ressonância Magnética , Proteínas de Neoplasias/isolamento & purificação , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas/isolamento & purificação , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ultracentrifugação
7.
Nucleic Acids Res ; 46(7): e41, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29361140

RESUMO

We describe a rapid fluorescence indicator displacement assay (R-FID) to evaluate the affinity and the selectivity of compounds binding to different DNA structures. We validated the assay using a library of 30 well-known nucleic acid binders containing a variety chemical scaffolds. We used a combination of principal component analysis and hierarchical clustering analysis to interpret the results obtained. This analysis classified compounds based on selectivity for AT-rich, GC-rich and G4 structures. We used the FID assay as a secondary screen to test the binding selectivity of an additional 20 compounds selected from the NCI Diversity Set III library that were identified as G4 binders using a thermal shift assay. The results showed G4 binding selectivity for only a few of the 20 compounds. Overall, we show that this R-FID assay, coupled with PCA and HCA, provides a useful tool for the discovery of ligands selective for particular nucleic acid structures.


Assuntos
DNA/genética , Ensaios de Triagem em Larga Escala/métodos , Conformação de Ácido Nucleico , Relação Estrutura-Atividade , Benzotiazóis/química , Sítios de Ligação/genética , Análise por Conglomerados , DNA/química , Corantes Fluorescentes , Quadruplex G , Ligantes , Oligonucleotídeos/química , Oligonucleotídeos/genética , Análise de Componente Principal , Quinolinas/química
8.
J Phys D Appl Phys ; 52(16): 163001, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33191949

RESUMO

Super-resolution microscopy (SRM) has become essential for the study of nanoscale biological processes. This type of imaging often requires the use of specialised image analysis tools to process a large volume of recorded data and extract quantitative information. In recent years, our team has built an open-source image analysis framework for SRM designed to combine high performance and ease of use. We named it NanoJ-a reference to the popular ImageJ software it was developed for. In this paper, we highlight the current capabilities of NanoJ for several essential processing steps: spatio-temporal alignment of raw data (NanoJ-Core), super-resolution image reconstruction (NanoJ-SRRF), image quality assessment (NanoJ-SQUIRREL), structural modelling (NanoJ-VirusMapper) and control of the sample environment (NanoJ-Fluidics). We expect to expand NanoJ in the future through the development of new tools designed to improve quantitative data analysis and measure the reliability of fluorescent microscopy studies.

9.
Nucleic Acids Res ; 45(22): 13056-13067, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29069417

RESUMO

G-quadruplexes (G4) within oncogene promoters are considered to be promising anticancer targets. However, often they undergo complex structural rearrangements that preclude a precise description of the optimal target. Moreover, even when solved structures are available, they refer to the thermodynamically stable forms but little or no information is supplied about their complex multistep folding pathway. To shed light on this issue, we systematically followed the kinetic behavior of a G-rich sequence located within the c-KIT proximal promoter (kit2) in the presence of monovalent cations K+ and Na+. A very short-lived intermediate was observed to start the G4 folding process in both salt conditions. Subsequently, the two pathways diverge to produce distinct thermodynamically stable species (parallel and antiparallel G-quadruplex in K+ and Na+, respectively). Remarkably, in K+-containing solution a branched pathway is required to drive the wild type sequence to distribute between a monomeric and dimeric G-quadruplex. Our approach has allowed us to identify transient forms whose relative abundance is regulated by the environment; some of them were characterized by a half-life within the timescale of physiological DNA processing events and thus may represent possible unexpected targets for ligands recognition.


Assuntos
DNA/química , Quadruplex G , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-kit/genética , Algoritmos , Dicroísmo Circular , DNA/genética , Dimerização , Meia-Vida , Humanos , Cinética , Modelos Moleculares , Potássio/química , Sódio/química , Termodinâmica
10.
Thorax ; 73(2): 134-144, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28916704

RESUMO

BACKGROUND: Cystic fibrosis (CF) lung disease is defined by large numbers of neutrophils and associated damaging products in the airway. Delayed neutrophil apoptosis is described in CF although it is unclear whether this is a primary neutrophil defect or a response to chronic inflammation. Increased levels of neutrophil extracellular traps (NETs) have been measured in CF and we aimed to investigate the causal relationship between these phenomena and their potential to serve as a driver of inflammation. We hypothesised that the delay in apoptosis in CF is a primary defect and preferentially allows CF neutrophils to form NETs, contributing to inflammation. METHODS: Blood neutrophils were isolated from patients with CF, CF pigs and appropriate controls. Neutrophils were also obtained from patients with CF before and after commencing ivacaftor. Apoptosis was assessed by morphology and flow cytometry. NET formation was determined by fluorescent microscopy and DNA release assays. NET interaction with macrophages was examined by measuring cytokine generation with ELISA and qRT-PCR. RESULTS: CF neutrophils live longer due to decreased apoptosis. This was observed in both cystic fibrosis transmembrane conductance regulator (CFTR) null piglets and patients with CF, and furthermore was reversed by ivacaftor (CFTR potentiator) in patients with gating (G551D) mutations. CF neutrophils formed more NETs and this was reversed by cyclin-dependent kinase inhibitor exposure. NETs provided a proinflammatory stimulus to macrophages, which was enhanced in CF. CONCLUSIONS: CF neutrophils have a prosurvival phenotype that is associated with an absence of CFTR function and allows increased NET production, which can in turn induce inflammation. Augmenting neutrophil apoptosis in CF may allow more appropriate neutrophil disposal, decreasing NET formation and thus inflammation.


Assuntos
Apoptose/fisiologia , Fibrose Cística/patologia , Armadilhas Extracelulares , Neutrófilos/fisiologia , Adulto , Animais , Estudos de Casos e Controles , Sobrevivência Celular , Fibrose Cística/sangue , Fibrose Cística/imunologia , Humanos , Inflamação , Suínos , Fatores de Tempo
12.
Nucleic Acids Res ; 41(16): 7934-46, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804761

RESUMO

Polyethylene glycols (PEGs) are widely used to perturb the conformations of nucleic acids, including G-quadruplexes. The mechanism by which PEG alters G-quadruplex conformation is poorly understood. We describe here studies designed to determine how PEG and other co-solutes affect the conformation of the human telomeric quadruplex. Osmotic stress studies using acetonitrile and ethylene glycol show that conversion of the 'hybrid' conformation to an all-parallel 'propeller' conformation is accompanied by the release of about 17 water molecules per quadruplex and is energetically unfavorable in pure aqueous solutions. Sedimentation velocity experiments show that the propeller form is hydrodynamically larger than hybrid forms, ruling out a crowding mechanism for the conversion by PEG. PEGs do not alter water activity sufficiently to perturb quadruplex hydration by osmotic stress. PEG titration experiments are most consistent with a conformational selection mechanism in which PEG binds more strongly to the propeller conformation, and binding is coupled to the conformational transition between forms. Molecular dynamics simulations show that PEG binding to the propeller form is sterically feasible and energetically favorable. We conclude that PEG does not act by crowding and is a poor mimic of the intranuclear environment, keeping open the question of the physiologically relevant quadruplex conformation.


Assuntos
Quadruplex G , Polietilenoglicóis/química , Telômero/química , Acetonitrilas/química , Humanos , Simulação de Dinâmica Molecular , Pressão Osmótica , Potássio/química , Água/química
13.
ACS Sens ; 9(5): 2550-2557, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659220

RESUMO

Acidification of the airway surface liquid in the respiratory system could play a role in the pathology of Cystic Fibrosis, but its low volume and proximity to the airway epithelium make it a challenging biological environment in which to noninvasively collect pH measurements. To address this challenge, we explored surface enhanced Raman scattering microsensors (SERS-MS), with a 4-mercaptobenzoic acid (MBA) pH reporter molecule, as pH sensors for the airway surface liquid of patient-derived in vitro models of the human airway. Using air-liquid interface (ALI) cultures to model the respiratory epithelium, we show that SERS-MS facilitates the optical measurement of trans-epithelial pH gradients between the airway surface liquid and the basolateral culture medium. SERS-MS also enabled the successful quantification of pH changes in the airway surface liquid following stimulation of the Cystic Fibrosis transmembrane conductance regulator (CFTR, the apical ion channel that is dysfunctional in Cystic Fibrosis airways). Finally, the influence of CFTR mutations on baseline airway surface liquid pH was explored by using SERS-MS to measure the pH in ALIs grown from Cystic Fibrosis and non-Cystic Fibrosis donors.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Concentração de Íons de Hidrogênio , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Compostos de Sulfidrila/química , Benzoatos/química
14.
Thorax ; 68(6): 532-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23396354

RESUMO

BACKGROUND: Clinical trials in cystic fibrosis (CF) have been hindered by the paucity of well characterised and clinically relevant outcome measures. AIM: To evaluate a range of conventional and novel biomarkers of CF lung disease in a multicentre setting as a contributing study in selecting outcome assays for a clinical trial of CFTR gene therapy. METHODS: A multicentre observational study of adult and paediatric patients with CF (>10 years) treated for a physician-defined exacerbation of CF pulmonary symptoms. Measurements were performed at commencement and immediately after a course of intravenous antibiotics. Disease activity was assessed using 46 assays across five key domains: symptoms, lung physiology, structural changes on CT, pulmonary and systemic inflammatory markers. RESULTS: Statistically significant improvements were seen in forced expiratory volume in 1 s (p<0.001, n=32), lung clearance index (p<0.01, n=32), symptoms (p<0.0001, n=37), CT scores for airway wall thickness (p<0.01, n=31), air trapping (p<0.01, n=30) and large mucus plugs (p=0.0001, n=31), serum C-reactive protein (p<0.0001, n=34), serum interleukin-6 (p<0.0001, n=33) and serum calprotectin (p<0.0001, n=31). DISCUSSION: We identify the key biomarkers of inflammation, imaging and physiology that alter alongside symptomatic improvement following treatment of an acute CF exacerbation. These data, in parallel with our study of biomarkers in patients with stable CF, provide important guidance in choosing optimal biomarkers for novel therapies. Further, they highlight that such acute therapy predominantly improves large airway parameters and systemic inflammation, but has less effect on airway inflammation.


Assuntos
Antibacterianos/administração & dosagem , Fibrose Cística/tratamento farmacológico , Volume Expiratório Forçado/fisiologia , Pneumopatias/tratamento farmacológico , Pulmão/fisiopatologia , Tomografia Computadorizada por Raios X , Adolescente , Adulto , Antibacterianos/uso terapêutico , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Criança , Fibrose Cística/diagnóstico , Fibrose Cística/fisiopatologia , Feminino , Humanos , Injeções Intravenosas , Interleucina-6/sangue , Complexo Antígeno L1 Leucocitário/sangue , Pulmão/diagnóstico por imagem , Pneumopatias/diagnóstico , Pneumopatias/fisiopatologia , Masculino , Recidiva , Resultado do Tratamento , Adulto Jovem
16.
Methods ; 57(1): 47-55, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22525787

RESUMO

Thermodynamic studies of G-quadruplex stability are an essential complement to structures obtained by NMR or X-ray crystallography. An understanding of the energetics of quadruplex folding provides a necessary foundation for the physical interpretation of quadruplex formation and reactivity. While thermal denaturation methods are most commonly used to evaluate quadruplex stability, it is also possible to study folding using isothermal titration methods. G-quadruplex folding is tightly coupled to specific cation binding. We describe here protocols for monitoring the cation-driven quadruplex folding transition using circular dichroism or absorbance, and for determination of the distribution of free and bound cation using a fluorescence indicator. Together these approaches provide insight into quadruplex folding at constant temperature, and characterize the linkage between cation binding and folding.


Assuntos
Cátions/química , Quadruplex G , Oligodesoxirribonucleotídeos/química , Dicroísmo Circular , Cristalografia por Raios X , Fluorescência , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , Dobramento de RNA , Temperatura , Termodinâmica
17.
Chem Commun (Camb) ; 59(22): 3249-3252, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36815668

RESUMO

Patient derived organoids have the potential to improve the physiological relevance of in vitro disease models. However, the 3D architecture of these self-assembled cellular structures makes probing their biochemistry more complex than in traditional 2D culture. We explore the application of surface enhanced Raman scattering microsensors (SERS-MS) to probe local pH gradients within patient derived airway organoid cultures. SERS-MS consist of solid polymer cores decorated with surface immobilised gold nanoparticles which are functionalised with pH sensitive reporter molecule 4-mercaptobenzoic acid (MBA). We demonstrate that by mixing SERS-MS into the extracellular matrix (ECM) of airway organoid cultures the probes can be engulfed by expanding organoids and report on local pH in the organoid lumen and ECM.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Ouro/química , Nanopartículas Metálicas/química , Células-Tronco , Organoides/metabolismo , Matriz Extracelular , Análise Espectral Raman , Concentração de Íons de Hidrogênio
18.
Lancet Respir Med ; 11(10): 916-931, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37699420

RESUMO

Cystic fibrosis is a multiorgan disease caused by impaired function of the cystic fibrosis transmembrane conductance regulator (CFTR). Since the introduction of the CFTR modulator combination elexacaftor-tezacaftor-ivacaftor (ETI), which acts directly on mutant CFTR to enhance its activity, most people with cystic fibrosis (pwCF) have seen pronounced reductions in symptoms, and studies project marked increases in life expectancy for pwCF who are eligible for ETI. However, modulator therapy has not cured cystic fibrosis and the success of CFTR modulators has resulted in immediate questions about the new state of cystic fibrosis disease and clinical challenges in the care of pwCF. In this Series paper, we summarise key questions about cystic fibrosis disease in the era of modulator therapy, highlighting state-of-the-art research and clinical practices, knowledge gaps, new challenges faced by pwCF and the potential for future health-care challenges, and the pressing need for additional therapies to treat the underlying genetic or molecular causes of cystic fibrosis.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Atenção à Saúde , Aminofenóis/uso terapêutico , Benzodioxóis/uso terapêutico , Mutação , Agonistas dos Canais de Cloreto/uso terapêutico
19.
Sci Adv ; 9(21): eadg5128, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235648

RESUMO

An intense, nonresolving airway inflammatory response leads to destructive lung disease in cystic fibrosis (CF). Dysregulation of macrophage immune function may be a key facet governing the progression of CF lung disease, but the underlying mechanisms are not fully understood. We used 5' end centered transcriptome sequencing to profile P. aeruginosa LPS-activated human CF macrophages, showing that CF and non-CF macrophages deploy substantially distinct transcriptional programs at baseline and following activation. This includes a significantly blunted type I IFN signaling response in activated patient cells relative to healthy controls that was reversible upon in vitro treatment with CFTR modulators in patient cells and by CRISPR-Cas9 gene editing to correct the F508del mutation in patient-derived iPSC macrophages. These findings illustrate a previously unidentified immune defect in human CF macrophages that is CFTR dependent and reversible with CFTR modulators, thus providing new avenues in the search for effective anti-inflammatory interventions in CF.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Mutação , Pseudomonas aeruginosa
20.
J Am Chem Soc ; 134(40): 16834-44, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22989179

RESUMO

Thermal denaturation profiles of several model oligonucleotides of the human telomere DNA sequence including d[A(GGGTTA)(3)GGG] (Tel22) were determined using circular dichroism (CD), fluorescence of adenine → 2-aminopurine analogs, and fluorescence resonance energy transfer (FRET) to monitor the unfolding process at specific locations within the quadruplex. The resulting optical spectra vs temperature data matrices were analyzed by singular value decomposition (SVD) to ascertain the minimum number of species required to reproduce the unfolding spectral profiles. Global nonlinear least-squares fitting of the SVD amplitude vectors was used to estimate thermodynamic parameters and optical spectra of all species for a series of unfolding mechanisms that included one-, two-, and three-step sequential pathways F ⇌ I(n) ⇌ U, n = 0, 1, or 2) as well as two mechanisms with spectroscopically distinct starting structures (F(1) and F(2)). The CD and FRET data for Tel22 unfolding between 4 and 94 °C in 25 mM KCl were best described by a sequential unfolding model with two intermediates, while the 2-aminopurine analogs required one intermediate. The higher melting intermediate I(2) had a transition midpoint temperature (T(m)) of 61 °C and a CD spectrum with a maximum and minimum at ~265 and ~245 nm, respectively. The fluorescence emission spectra of the 2-aminopurine and FRET derivatives suggest greater solvent exposure of the 5'-AGGGTTA- segment in the intermediate compared to the folded state. The spectroscopic properties of the 61 °C intermediate suggest that it may be a triple helical structure.


Assuntos
Oligonucleotídeos/química , Telômero/química , 2-Aminopurina/química , Sequência de Bases , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA