Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 57(48): 6726-6734, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30407793

RESUMO

The reaction of 5 S,15 S-dihydroperoxyeicosatetraenoic acid (5,15-diHpETE) with human 5-lipoxygenase (LOX), human platelet 12-LOX, and human reticulocyte 15-LOX-1 was investigated to determine the reactivity and relative rates of producing lipoxins (LXs). 5-LOX does not react with 5,15-diHpETE, although it can produce LXA4 when 15-HpETE is the substrate. In contrast, both 12-LOX and 15-LOX-1 react with 5,15-diHpETE, forming specifically LXB4. For 12-LOX and 5,15-diHpETE, the kinetic parameters are kcat = 0.17 s-1 and kcat/ KM = 0.011 µM-1 s-1 [106- and 1600-fold lower than those for 12-LOX oxygenation of arachidonic acid (AA), respectively]. On the other hand, for 15-LOX-1 the equivalent parameters are kcat = 4.6 s-1 and kcat/ KM = 0.21 µM-1 s-1 (3-fold higher and similar to those for 12-HpETE formation by 15-LOX-1 from AA, respectively). This contrasts with the complete lack of reaction of 15-LOX-2 with 5,15-diHpETE [Green, A. R., et al. (2016) Biochemistry 55, 2832-2840]. Our data indicate that 12-LOX is markedly inferior to 15-LOX-1 in catalyzing the production of LXB4 from 5,15-diHpETE. Platelet aggregation was inhibited by the addition of 5,15-diHpETE, with an IC50 of 1.3 µM; however, LXB4 did not significantly inhibit collagen-mediated platelet activation up to 10 µM. In summary, LXB4 is the primary product of 12-LOX and 15-LOX-1 catalysis, if 5,15-diHpETE is the substrate, with 15-LOX-1 being 20-fold more efficient than 12-LOX. LXA4 is the primary product with 5-LOX but only if 15-HpETE is the substrate. Approximately equal proportions of LXA4 and LXB4 are produced by 12-LOX but only if LTA4 is the substrate, as described previously [Sheppard, K. A., et al. (1992) Biochim. Biophys. Acta 1133, 223-234].


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Leucotrienos/metabolismo , Peróxidos Lipídicos/metabolismo , Lipoxinas/biossíntese , Biocatálise , Vias Biossintéticas , Plaquetas/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Cinética , Leucócitos/metabolismo , Reticulócitos/metabolismo , Especificidade por Substrato
2.
Arterioscler Thromb Vasc Biol ; 36(10): 2068-77, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27470510

RESUMO

OBJECTIVE: Dietary supplementation with polyunsaturated fatty acids has been widely used for primary and secondary prevention of cardiovascular disease in individuals at risk; however, the cardioprotective benefits of polyunsaturated fatty acids remain controversial because of lack of mechanistic and in vivo evidence. We present direct evidence that an omega-6 polyunsaturated fatty acid, dihomo-γ-linolenic acid (DGLA), exhibits in vivo cardioprotection through 12-lipoxygenase (12-LOX) oxidation of DGLA to its reduced oxidized lipid form, 12(S)-hydroxy-8Z,10E,14Z-eicosatrienoic acid (12(S)-HETrE), inhibiting platelet activation and thrombosis. APPROACH AND RESULTS: DGLA inhibited ex vivo platelet aggregation and Rap1 activation in wild-type mice, but not in mice lacking 12-LOX expression (12-LOX(-/-)). Similarly, wild-type mice treated with DGLA were able to reduce thrombus growth (platelet and fibrin accumulation) after laser-induced injury of the arteriole of the cremaster muscle, but not 12-LOX(-/-) mice, supporting a 12-LOX requirement for mediating the inhibitory effects of DGLA on platelet-mediated thrombus formation. Platelet activation and thrombus formation were also suppressed when directly treated with 12(S)-HETrE. Importantly, 2 hemostatic models, tail bleeding and arteriole rupture of the cremaster muscle, showed no alteration in hemostasis after 12(S)-HETrE treatment. Finally, the mechanism for 12(S)-HETrE protection was shown to be mediated via a Gαs-linked G-protein-coupled receptor pathway in human platelets. CONCLUSIONS: This study provides the direct evidence that an omega-6 polyunsaturated fatty acid, DGLA, inhibits injury-induced thrombosis through its 12-LOX oxylipin, 12(S)-HETrE, which strongly supports the potential cardioprotective benefits of DGLA supplementation through its regulation of platelet function. Furthermore, this is the first evidence of a 12-LOX oxylipin regulating platelet function in a Gs α subunit-linked G-protein-coupled receptor-dependent manner.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Araquidonato 12-Lipoxigenase/sangue , Plaquetas/efeitos dos fármacos , Cromograninas/sangue , Fibrinolíticos/farmacologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/sangue , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Trombose/prevenção & controle , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Araquidonato 12-Lipoxigenase/deficiência , Araquidonato 12-Lipoxigenase/genética , Plaquetas/metabolismo , Moléculas de Adesão Celular/sangue , AMP Cíclico/sangue , Proteínas Quinases Dependentes de AMP Cíclico/sangue , Modelos Animais de Doenças , Fibrinolíticos/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/sangue , Oxirredução , Fosfoproteínas/sangue , Fosforilação , Agregação Plaquetária/efeitos dos fármacos , Complexo Shelterina , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a Telômeros/sangue , Trombose/sangue , Trombose/enzimologia , Trombose/genética , Fatores de Tempo
3.
Biochemistry ; 55(20): 2832-40, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27145229

RESUMO

Lipoxins are an important class of lipid mediators that induce the resolution of inflammation and arise from transcellular exchange of arachidonic acid (AA)-derived lipoxygenase products. Human epithelial 15-lipoxygenase-2 (h15-LOX-2), the major lipoxygenase in macrophages, has exhibited strict regiospecificity, catalyzing only the hydroperoxidation of carbon 15 of AA. To determine the catalytic potential of h15-LOX-2 in transcellular synthesis events, we reacted it with the three lipoxygenase-derived monohydroperoxy-eicosatetraenoic acids (HPETE) in humans: 5-HPETE, 12-HPETE, and 15-HPETE. Only 5-HPETE was a substrate for h15-LOX-2, and the steady-state catalytic efficiency (kcat/Km) of this reaction was 31% of the kcat/Km of AA. The only major product of h15-LOX-2's reaction with 5-HPETE was the proposed lipoxin intermediate, 5,15-dihydroperoxy-eicosatetraenoic acid (5,15-diHPETE). However, h15-LOX-2 did not react further with 5,15-diHPETE to produce lipoxins. This result is consistent with the specificity of h15-LOX-2 despite the increased reactivity of 5,15-diHPETE. Density functional theory calculations determined that the radical, after abstracting the C10 hydrogen atom from 5,15-diHPETE, had an energy 5.4 kJ/mol lower than that of the same radical generated from AA, demonstrating the facility of 5,15-diHPETE to form lipoxins. Interestingly, h15-LOX-2 does react with 5S,6R-diHETE, forming LipoxinA4, indicating the gemdiol does not prohibit h15-LOX-2 reactivity. Taken together, these results demonstrate the strict regiospecificity of h15-LOX-2 that circumscribes its role in transcellular synthesis.


Assuntos
Araquidonato 15-Lipoxigenase , Ácidos Hidroxieicosatetraenoicos , Araquidonato 15-Lipoxigenase/química , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Catálise , Humanos , Ácidos Hidroxieicosatetraenoicos/biossíntese , Ácidos Hidroxieicosatetraenoicos/química , Ácidos Hidroxieicosatetraenoicos/genética , Especificidade por Substrato
4.
Plant Cell ; 25(12): 5043-52, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24363310

RESUMO

Potato (Solanum tuberosum) multicystatin (PMC) is a unique cystatin composed of eight repeating units, each capable of inhibiting cysteine proteases. PMC is a composite of several cystatins linked by trypsin-sensitive (serine protease) domains and undergoes transitions between soluble and crystalline forms. However, the significance and the regulatory mechanism or mechanisms governing these transitions are not clearly established. Here, we report the 2.2-Šcrystal structure of the trypsin-resistant PMC core consisting of the fifth, sixth, and seventh domains. The observed interdomain interaction explains PMC's resistance to trypsin and pH-dependent solubility/aggregation. Under acidic pH, weakening of the interdomain interactions exposes individual domains, resulting in not only depolymerization of the crystalline form but also exposure of cystatin domains for inhibition of cysteine proteases. This in turn allows serine protease-mediated fragmentation of PMC, producing ∼ 10-kD domains with intact inhibitory capacity and faster diffusion, thus enhancing PMC's inhibitory ability toward cysteine proteases. The crystal structure, light-scattering experiments, isothermal titration calorimetry, and site-directed mutagenesis confirmed the critical role of pH and N-terminal residues in these dynamic transitions between monomer/polymer of PMC. Our data support a notion that the pH-dependent structural regulation of PMC has defense-related implications in tuber physiology via its ability to regulate protein catabolism.


Assuntos
Cistatinas/química , Proteínas de Plantas/química , Solanum tuberosum/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Cristalografia por Raios X , Cistatinas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência
5.
Plant Physiol ; 165(4): 1440-1456, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24948836

RESUMO

Using S-adenosyl-methionine as the methyl donor, caffeic acid O-methyltransferase from sorghum (Sorghum bicolor; SbCOMT) methylates the 5-hydroxyl group of its preferred substrate, 5-hydroxyconiferaldehyde. In order to determine the mechanism of SbCOMT and understand the observed reduction in the lignin syringyl-to-guaiacyl ratio of three brown midrib12 mutants that carry COMT gene missense mutations, we determined the apo-form and S-adenosyl-methionine binary complex SbCOMT crystal structures and established the ternary complex structure with 5-hydroxyconiferaldehyde by molecular modeling. These structures revealed many features shared with monocot ryegrass (Lolium perenne) and dicot alfalfa (Medicago sativa) COMTs. SbCOMT steady-state kinetic and calorimetric data suggest a random bi-bi mechanism. Based on our structural, kinetic, and thermodynamic results, we propose that the observed reactivity hierarchy among 4,5-dihydroxy-3-methoxycinnamyl (and 3,4-dihydroxycinnamyl) aldehyde, alcohol, and acid substrates arises from the ability of the aldehyde to stabilize the anionic intermediate that results from deprotonation of the 5-hydroxyl group by histidine-267. Additionally, despite the presence of other phenylpropanoid substrates in vivo, sinapaldehyde is the preferential product, as demonstrated by its low Km for 5-hydroxyconiferaldehyde. Unlike its acid and alcohol substrates, the aldehydes exhibit product inhibition, and we propose that this is due to nonproductive binding of the S-cis-form of the aldehydes inhibiting productive binding of the S-trans-form. The S-cis-aldehydes most likely act only as inhibitors, because the high rotational energy barrier around the 2-propenyl bond prevents S-trans-conversion, unlike alcohol substrates, whose low 2-propenyl bond rotational energy barrier enables rapid S-cis/S-trans-interconversion.

6.
Mol Microbiol ; 88(3): 523-36, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23489289

RESUMO

PcpA (2,6-dichloro-p-hydroquinone 1,2-dioxygenase) from Sphingobium chlorophenolicum, a non-haem Fe(II) dioxygenase capable of cleaving the aromatic ring of p-hydroquinone and its substituted variants, is a member of the recently discovered p-hydroquinone 1,2-dioxygenases. Here we report the 2.6 Å structure of PcpA, which consists of four ßαßßß motifs, a hallmark of the vicinal oxygen chelate superfamily. The secondary co-ordination sphere of the Fe(II) centre forms an extensive hydrogen-bonding network with three solvent exposed residues, linking the catalytic Fe(II) to solvent. A tight hydrophobic pocket provides p-hydroquinones access to the Fe(II) centre. The p-hydroxyl group is essential for the substrate-binding, thus phenols and catechols, lacking a p-hydroxyl group, do not bind to PcpA. Site-directed mutagenesis and kinetic analysis confirm the critical catalytic role played by the highly conserved His10, Thr13, His226 and Arg259. Based on these results, we propose a general reaction mechanism for p-hydroquinone 1,2-dioxygenases.


Assuntos
Dioxigenases/química , Sphingomonadaceae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria , Catálise , Catecóis/farmacologia , Compostos Ferrosos , Hidroquinonas/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Alinhamento de Sequência , Sphingomonadaceae/genética
7.
J Biol Chem ; 287(43): 35838-48, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22955277

RESUMO

Glutathionyl-hydroquinone reductases (GS- HQRs) are a newly identified group of glutathione transferases, and they are widely distributed in bacteria, halobacteria, fungi, and plants. GS-HQRs catalyze glutathione (GSH)-dependent reduction of glutathionyl-hydroquinones (GS-hydroquinones) to hydroquinones. GS-hydroquinones can be spontaneously formed from benzoquinones reacting with reduced GSH via Michael addition, and GS-HQRs convert the conjugates to hydroquinones. In this report we have determined the structures of two bacterial GS-HQRs, PcpF of Sphingobium chlorophenolicum and YqjG of Escherichia coli. The two structures and the previously reported structure of a fungal GS-HQR shared many features and displayed complete conservation for all the critical residues. Furthermore, we obtained the binary complex structures with GS-menadione, which in its reduced form, GS-menadiol, is a substrate. The structure revealed a large H-site that could accommodate various substituted hydroquinones and a hydrogen network of three Tyr residues that could provide the proton for reductive deglutathionylation. Mutation of the Tyr residues and the position of two GSH molecules confirmed the proposed mechanism of GS-HQRs. The conservation of GS-HQRs across bacteria, halobacteria, fungi, and plants potentiates the physiological role of these enzymes in quinone metabolism.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Glutationa/química , Oxirredutases/química , Sphingomonadaceae/enzimologia , Vitamina K 3/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glutationa/genética , Glutationa/metabolismo , Mutação de Sentido Incorreto , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Estrutura Terciária de Proteína , Sphingomonadaceae/genética
8.
Pharmacol Res Perspect ; 11(1): e01056, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36708179

RESUMO

The antiplatelet effect of polyunsaturated fatty acids is primarily attributed to its metabolism to bioactive metabolites by oxygenases, such as lipoxygenases (LOX). Platelets have demonstrated the ability to generate 15-LOX-derived metabolites (15-oxylipins); however, whether 15-LOX is in the platelet or is required for the formation of 15-oxylipins remains unclear. This study seeks to elucidate whether 15-LOX is required for the formation of 15-oxylipins in the platelet and determine their mechanistic effects on platelet reactivity. In this study, 15-HETrE, 15-HETE, and 15-HEPE attenuated collagen-induced platelet aggregation, and 15-HETrE inhibited platelet aggregation induced by different agonists. The observed anti-aggregatory effect was due to the inhibition of intracellular signaling including αIIbß3 and protein kinase C activities, calcium mobilization, and granule secretion. While 15-HETrE inhibited platelets partially through activation of peroxisome proliferator-activated receptor ß (PPARß), 15-HETE also inhibited platelets partially through activation of PPARα. 15-HETrE, 15-HETE, or 15-HEPE inhibited 12-LOX in vitro, with arachidonic acid as the substrate. Additionally, a 15-oxylipin-dependent attenuation of 12-HETE level was observed in platelets following ex vivo treatment with 15-HETrE, 15-HETE, or 15-HEPE. Platelets treated with DGLA formed 15-HETrE and collagen-induced platelet aggregation was attenuated only in the presence of ML355 or aspirin, but not in the presence of 15-LOX-1 or 15-LOX-2 inhibitors. Expression of 15-LOX-1, but not 15-LOX-2, was decreased in leukocyte-depleted platelets compared to non-depleted platelets. Taken together, these findings suggest that 15-oxylipins regulate platelet reactivity; however, platelet expression of 15-LOX-1 is low, suggesting that 15-oxylipins may be formed in the platelet through a 15-LOX-independent pathway.


Assuntos
Ácidos Graxos , Oxilipinas , Araquidonato 15-Lipoxigenase , Eicosanoides , Inibidores de Lipoxigenase/farmacologia , Receptores Depuradores Classe E
9.
FEBS Lett ; 589(13): 1444-9, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25953126

RESUMO

Substrate binding properties of the large (LS) and small (SS) subunits of potato tuber ADP-glucose pyrophosphorylase were investigated by using isothermal titration calorimetry. Our results clearly show that the wild type heterotetramer (S(WT)L(WT)) possesses two distinct types of ATP binding sites, whereas the homotetrameric LS and SS variant forms only exhibited properties of one of the two binding sites. The wild type enzyme also exhibited significantly increased affinity to this substrate compared to the homotetrameric enzyme forms. No stable binding was evident for the second substrate, glucose-1-phosphate, in the presence or absence of ATPγS suggesting that interaction of glucose-1-phosphate is dependent on hydrolysis of ATP and supports the Theorell-Chance bi bi reaction mechanism.


Assuntos
Calorimetria/métodos , Glucose-1-Fosfato Adenililtransferase/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos/enzimologia , Solanum tuberosum/enzimologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Ligação Competitiva , Western Blotting , Glucose-1-Fosfato Adenililtransferase/química , Glucofosfatos/química , Glucofosfatos/metabolismo , Cinética , Modelos Moleculares , Estrutura Molecular , Proteínas de Plantas/química , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA