Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1012028, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416796

RESUMO

Human astrovirus (HAstV) is a known cause of viral gastroenteritis in children worldwide, but HAstV can cause also severe and systemic infections in immunocompromised patients. There are three clades of HAstV: classical, MLB, and VA/HMO. While all three clades are found in gastrointestinal samples, HAstV-VA/HMO is the main clade associated with meningitis and encephalitis in immunocompromised patients. To understand how the HAstV-VA/HMO can infect the central nervous system, we investigated its sequence-divergent capsid spike, which functions in cell attachment and may influence viral tropism. Here we report the high-resolution crystal structures of the HAstV-VA1 capsid spike from strains isolated from patients with gastrointestinal and neuronal disease. The HAstV-VA1 spike forms a dimer and shares a core beta-barrel structure with other astrovirus capsid spikes but is otherwise strikingly different, suggesting that HAstV-VA1 may utilize a different cell receptor, and an infection competition assay supports this hypothesis. Furthermore, by mapping the capsid protease cleavage site onto the structure, the maturation and assembly of the HAstV-VA1 capsid is revealed. Finally, comparison of gastrointestinal and neuronal HAstV-VA1 sequences, structures, and antigenicity suggests that neuronal HAstV-VA1 strains may have acquired immune escape mutations. Overall, our studies on the HAstV-VA1 capsid spike lay a foundation to further investigate the biology of HAstV-VA/HMO and to develop vaccines and therapeutics targeting it.


Assuntos
Infecções por Astroviridae , Mamastrovirus , Criança , Humanos , Capsídeo , Proteínas do Capsídeo/química , Mutação , Filogenia , Fezes
2.
J Virol ; 98(7): e0097124, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38916399

RESUMO

Astroviruses are highly divergent and infect a wide variety of animal hosts. In 2009, a genetically divergent human astrovirus (HAstV) strain VA1 was first identified in an outbreak of acute gastroenteritis. This strain has also been associated with fatal central nervous system disease. In this work, we report the isolation of three high-affinity neutralizing monoclonal antibodies (Nt-MAbs) targeting the capsid spike domain of HAstV-VA1. These antibodies (7C8, 2A2, 3D8) were used to select individual HAstV-VA1 mutants resistant to their neutralizing activity and a HAstV-VA1 triple mutant that escapes neutralization from all three Nt-MAbs. Sequencing of the virus genome capsid region revealed escape mutations that map to the surface of the capsid spike domain, define three potentially independent neutralization epitopes, and help delineate four antigenic sites in human astroviruses. Notably, two of the escape mutations were found to be present in the spike sequence of the HAstV-VA1-PS strain isolated from an immunodeficient patient with encephalitis, suggesting that those mutations arose as a result of the immune pressure generated by the patient's immunotherapy. In agreement with this observation, human serum samples exhibiting strong neutralization activity against wild-type HAstV-VA1 had a 2.6-fold reduction in neutralization titer when evaluated against the triple-escape HAstV-VA1 mutant, suggesting that both mouse and human antibody responses target shared neutralization epitopes. The isolated Nt-MAbs reported in this work will help to characterize the functional domains of the virus during cell entry and have the potential for developing a specific antibody therapy for the neurological disease associated with HAstV-VA1. IMPORTANCE: Human astroviruses (HAstVs) have been historically associated with acute gastroenteritis. However, the genetically divergent HAstV-VA1 strain has been associated with central nervous system disease. In this work high-affinity neutralizing monoclonal antibodies directed to HAstV-VA1 were isolated and characterized. The proposed binding sites for these antibodies and for neutralizing antibodies against classical HAstVs suggest that there are at least four neutralization sites on the capsid spike of astroviruses. Our data show that natural infection with human astrovirus VA1 elicits a robust humoral immune response that targets the same antigenic sites recognized by the mouse monoclonal antibodies and strongly suggests the emergence of a variant HAstV-VA1 virus in an immunodeficient patient with prolonged astrovirus infection. The isolated Nt-MAb reported in this work will help to define the functional sites of the virus involved in cell entry and hold promise for developing a specific antibody therapy for the neurological disease associated with HAstV-VA1.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Humanos , Animais , Anticorpos Neutralizantes/imunologia , Camundongos , Epitopos/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Monoclonais/imunologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Mamastrovirus/imunologia , Mamastrovirus/genética , Mutação , Infecções por Astroviridae/imunologia , Infecções por Astroviridae/virologia , Testes de Neutralização
3.
bioRxiv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38496431

RESUMO

Astroviruses are highly divergent and infect a wide variety of animal hosts. In 2009, a genetically divergent human astrovirus (HAstV) strain VA1 was first identified in an outbreak of acute gastroenteritis. This strain has also been associated with fatal central nervous system disease. In this work, we report the isolation of three high-affinity neutralizing monoclonal antibodies (Nt-MAbs) targeting the capsid spike domain of HAstV-VA1. These antibodies (7C8, 2A2, 3D8) were used to select individual HAstV-VA1 mutants resistant to their neutralizing activity and also select a HAstV-VA1 triple mutant that escapes neutralization from all three Nt-MAbs. Sequencing of the virus genome capsid region revealed escape mutations that map to the surface of the capsid spike domain, define three potentially independent neutralization epitopes, and help delineate four antigenic sites in rotaviruses. Notably, two of the escape mutations were found to be present in the spike sequence of the HAstV-VA1-PS strain isolated from an immunodeficient patient with encephalitis, suggesting that those mutations arose as a result of the immune pressure generated by the patient's immunotherapy. In accordance with this observation, human serum samples exhibiting strong neutralization activity against wild-type HAstV-VA1 had a 2.6-fold reduction in neutralization titer when evaluated against the triple-escape HAstV-VA1 mutant, indicating shared neutralization epitopes between the mouse and human antibody response. The isolated Nt-MAbs reported in this work will help characterize the functional sites of the virus during cell entry and have the potential for developing a specific antibody therapy for the neurological disease associated with HAstV-VA1. Importance: Human astroviruses (HAstVs) have been historically associated with acute gastroenteritis. However, the genetically divergent HAstV-VA1 strain has been associated with central nervous system disease. This work isolated high-affinity neutralizing monoclonal antibodies directed to HAstV-VA1. The proposed binding sites for these antibodies, together with previously reported sites for neutralizing antibodies against classical HAstVs, suggest the existence of at least four neutralization sites on the capsid spike of astroviruses. Our data show that natural infection with human astrovirus VA1 elicits a robust humoral immune response that targets the same antigenic sites recognized by the mouse monoclonal antibodies and strongly suggests the emergence of a variant HAstV-VA1 virus in an immunodeficient patient with prolonged astrovirus infection. The isolated Nt-MAb reported in this work will be helpful in defining the functional sites of the virus involved in cell entry and hold promise for developing a specific antibody therapy for the neurological disease associated with HAstV-VA1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA