Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Bioorg Med Chem Lett ; 80: 129084, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423823

RESUMO

In the treatment of non-small cell lung cancer (NSCLC), patients harboring exon 20 insertion mutations in the epidermal growth factor receptor (EGFR) gene (EGFR) have few effective therapies because this subset of mutants is generally resistant to most currently approved EGFR inhibitors. This report describes the structure-guided design of a novel series of potent, irreversible inhibitors of EGFR exon 20 insertion mutations, including the V769_D770insASV and D770_N771insSVD mutants. Extensive structure-activity relationship (SAR) studies led to the discovery of mobocertinib (compound 21c), which inhibited growth of Ba/F3 cells expressing the ASV insertion with a half-maximal inhibitory concentration of 11 nM and with selectivity over wild-type EGFR. Daily oral administration of mobocertinib induced tumor regression in a Ba/F3 ASV xenograft mouse model at well-tolerated doses. Mobocertinib was approved in September 2021 for the treatment of adult patients with advanced NSCLC with EGFR exon 20 insertion mutations with progression on or after platinum-based chemotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutagênese Insercional , Mutação , Receptores ErbB , Éxons , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Cancer Discov ; 11(7): 1672-1687, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33632773

RESUMO

Most EGFR exon 20 insertion (EGFRex20ins) driver mutations in non-small cell lung cancer (NSCLC) are insensitive to approved EGFR tyrosine kinase inhibitors (TKI). To address the limitations of existing therapies targeting EGFR-mutated NSCLC, mobocertinib (TAK-788), a novel irreversible EGFR TKI, was specifically designed to potently inhibit oncogenic variants containing activating EGFRex20ins mutations with selectivity over wild-type EGFR. The in vitro and in vivo activity of mobocertinib was evaluated in engineered and patient-derived models harboring diverse EGFRex20ins mutations. Mobocertinib inhibited viability of various EGFRex20ins-driven cell lines more potently than approved EGFR TKIs and demonstrated in vivo antitumor efficacy in patient-derived xenografts and murine orthotopic models. These findings support the ongoing clinical development of mobocertinib for the treatment of EGFRex20ins-mutated NSCLC. SIGNIFICANCE: No oral EGFR-targeted therapies are approved for EGFR exon 20 insertion (EGFRex20ins) mutation-driven NSCLC. Mobocertinib is a novel small-molecule EGFR inhibitor specifically designed to target EGFRex20ins mutants. Preclinical data reported here support the clinical development of mobocertinib in patients with NSCLC with EGFR exon 20 insertion mutations.See related commentary by Pacheco, p. 1617.This article is highlighted in the In This Issue feature, p. 1601.


Assuntos
Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Éxons , Indóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Pirimidinas/uso terapêutico , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Receptores ErbB , Humanos , Indóis/farmacologia , Neoplasias Pulmonares/genética , Camundongos , Mutagênese Insercional , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Circulation ; 119(13): 1768-75, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19307474

RESUMO

BACKGROUND: Cardiac magnetic resonance (MR) perfusion imaging during the first pass after intravenous administration of extracellular contrast agents is hampered by the spatial and temporal resolution achievable and by the artifacts seen in ultrafast MR imaging. Furthermore, time-consuming quantitative data analysis is often added. The use of molecular MR imaging with a target-specific contrast agent with perfusion-dependent binding to myocardium may enable prolonged visualization of perfusion defects and thus may help to overcome limitations of currently used first-pass extracellular MR imaging. EP-3600 is a new gadolinium-containing molecular contrast agent that binds reversibly to myocardial collagen. METHODS AND RESULTS: A significant but nonocclusive coronary artery stenosis was modeled in 7 domestic swine with an undersized MR-compatible balloon positioned in the left anterior descending artery as verified by x-ray angiography. Two animals died before contrast injection as a result of arrhythmias. In 5 swine, high-spatial-resolution gradient echo imaging (approximately 1 x 1 mm(2) in-plane resolution) was performed before and 5, 20, 40, and 60 minutes after intravenous administration of 12.3 micromol/kg EP-3600. Contrast was administered during stress induced by an infusion of 250 mumol x kg(-1) x min(-1) adenosine. Yb-DTPA was administered simultaneously for comparison of myocardium-to-plasma ratios. Images were assessed subjectively by 2 investigators, and signal-to-noise and contrast-to-noise ratios over time were calculated. Normal myocardium showed a significant signal-to-noise ratio increase during the entire examination time. In all animals (n=5), the perfusion defect in the left anterior descending artery territory could be visualized with a high contrast-to-noise ratio for at least 20 minutes after contrast injection. A significantly higher myocardium-to-plasma ratio was found for EP-3600 compared with the control agent Yb-DTPA (0.85+/-0.26 versus 0.22+/-0.08, respectively; P<0.01). CONCLUSIONS: EP-3600 is a new molecular MR imaging contrast agent that binds to the myocardium and enables prolonged, high-contrast, high-spatial-resolution visualization of myocardial perfusion defects.


Assuntos
Colágeno/metabolismo , Meios de Contraste , Estenose Coronária/patologia , Imageamento por Ressonância Magnética/métodos , Oligopeptídeos , Compostos Organometálicos , Animais , Artefatos , Meios de Contraste/química , Meios de Contraste/metabolismo , Circulação Coronária , Estenose Coronária/metabolismo , Modelos Animais de Doenças , Espaço Extracelular/metabolismo , Estudos de Viabilidade , Miocárdio/metabolismo , Miocárdio/patologia , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Ácido Pentético/análogos & derivados , Sus scrofa
5.
J Med Chem ; 59(2): 671-86, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26700752

RESUMO

Choline kinase α (ChoKα) is an enzyme involved in the synthesis of phospholipids and thereby plays key roles in regulation of cell proliferation, oncogenic transformation, and human carcinogenesis. Since several inhibitors of ChoKα display antiproliferative activity in both cellular and animal models, this novel oncogene has recently gained interest as a promising small molecule target for cancer therapy. Here we summarize our efforts to further validate ChoKα as an oncogenic target and explore the activity of novel small molecule inhibitors of ChoKα. Starting from weakly binding fragments, we describe a structure based lead discovery approach, which resulted in novel highly potent inhibitors of ChoKα. In cancer cell lines, our lead compounds exhibit a dose-dependent decrease of phosphocholine, inhibition of cell growth, and induction of apoptosis at low micromolar concentrations. The druglike lead series presented here is optimizable for improvements in cellular potency, drug target residence time, and pharmacokinetic parameters. These inhibitors may be utilized not only to further validate ChoKα as antioncogenic target but also as novel chemical matter that may lead to antitumor agents that specifically interfere with cancer cell metabolism.


Assuntos
Colina Quinase/antagonistas & inibidores , Descoberta de Drogas/métodos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colina Quinase/isolamento & purificação , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Fosforilcolina/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas
6.
Angew Chem Int Ed Engl ; 40(15): 2903-2906, 2001 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-29711998

RESUMO

Clinically relevant relaxivity enhancement of a magnetic resonance imaging (MRI) contrast agent has been achieved by using prodrug Gd3+ complexes (see picture, DTPA=diethylenetriaminepentaaceto). Enzymatic cleavage of lysine residues from the prodrug exposes a group that has a high affinity to human serum albumin and promotes enhanced relaxivity, thus enabling the detection of targets at submicromolar concentrations.

8.
J Med Chem ; 56(3): 1023-40, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23302067

RESUMO

Lactate dehydrogenase A (LDH-A) catalyzes the interconversion of lactate and pyruvate in the glycolysis pathway. Cancer cells rely heavily on glycolysis instead of oxidative phosphorylation to generate ATP, a phenomenon known as the Warburg effect. The inhibition of LDH-A by small molecules is therefore of interest for potential cancer treatments. We describe the identification and optimization of LDH-A inhibitors by fragment-based drug discovery. We applied ligand based NMR screening to identify low affinity fragments binding to LDH-A. The dissociation constants (K(d)) and enzyme inhibition (IC(50)) of fragment hits were measured by surface plasmon resonance (SPR) and enzyme assays, respectively. The binding modes of selected fragments were investigated by X-ray crystallography. Fragment growing and linking, followed by chemical optimization, resulted in nanomolar LDH-A inhibitors that demonstrated stoichiometric binding to LDH-A. Selected molecules inhibited lactate production in cells, suggesting target-specific inhibition in cancer cell lines.


Assuntos
Inibidores Enzimáticos/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , Domínio Catalítico , Linhagem Celular Tumoral , Cristalografia por Raios X , Inibidores Enzimáticos/química , Glicólise , Humanos , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/metabolismo , Espectroscopia de Ressonância Magnética , Fosforilação Oxidativa , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray
10.
Invest Radiol ; 45(10): 613-24, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20808234

RESUMO

RATIONALE AND OBJECTIVES: The observed relaxivity of gadolinium-based contrast agents has contributions from the water molecule(s) that bind directly to the gadolinium ion (inner-sphere water), long-lived water molecules and exchangeable protons that make up the second-sphere of coordination, and water molecules that diffuse near the contrast agent (outer-sphere). Inner- and second-sphere relaxivity can both be increased by optimization of the lifetimes of the water molecules and protons in these coordination spheres, the rotational motion of the complex, and the electronic relaxation of the gadolinium ion. We sought to identify new high-relaxivity contrast agents by systematically varying the donor atoms that bind directly to gadolinium to increase inner-sphere relaxivity and concurrently including substituents that influence the second-sphere relaxivity. METHODS: Twenty gadolinium-1,4,7,10-tetraazacyclo-dodecane-N,N',N″,N'″-tetraacetato derivatives were prepared and their relaxivity determined in presence and absence of human serum albumin as a function of temperature and magnetic field. Data was analyzed to extract the underlying molecular parameters influencing relaxivity. Each compound had a common albumin-binding group and an inner-sphere donor set comprising the 4 tertiary amine N atoms from cyclen, an α-substituted acetate oxygen atom, 2 amide oxygen atoms, an inner-sphere water oxygen atom, and a variable donor group. Each amide nitrogen was substituted with different groups to promote hydrogen bonding with second-sphere water molecules. RESULTS: Relativities at 0.47 and 1.4 T, 37°C, in serum albumin ranged from 16.0 to 58.1 mM(-1)s(-1) and from 12.3 to 34.8 mM(-1)s(-1), respectively. The reduction of inner-sphere water exchange typical of amide donor groups could be offset by incorporating a phosphonate or phenolate oxygen atom donor in the first coordination sphere, resulting in higher relaxivity. Amide nitrogen substitution with pendant phosphonate or carboxylate groups increased relaxivity by as much as 88% compared with the N-methyl amide analog. Second-sphere relaxivity contributed as much as 24 and 14 mM(-1)s(-1) at 0.47 and 1.4 T, respectively. CONCLUSIONS: Water/proton exchange dynamics in the inner- and second-coordination sphere can be predictably tuned by choice of donor atoms and second-sphere substituents, resulting in high-relaxivity agents.


Assuntos
Albuminas/química , Meios de Contraste/química , Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Prótons , Albuminas/metabolismo , Fenômenos Químicos , Meios de Contraste/metabolismo , Gadolínio/sangue , Gadolínio/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Água/química
11.
New J Chem ; 2010(34): 611-616, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20526382

RESUMO

A strategy for preparing high relaxivity, metabolically stable peptide-based MR contrast agents is described.

13.
Invest Radiol ; 43(12): 861-70, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19002058

RESUMO

OBJECTIVES: Recent advances in the design of MRI contrast agents have rendered the lanthanide complexes of DOTA-tetraamide ligands of considerable interest, both as responsive MR agents and paramagnetic chemical exchange saturation transfer agents. The potential utility of these complexes for in vivo applications is contingent upon them being well tolerated by the body. The purpose of this study was to examine how the nature of the amide substituent, and in particular its charge, affected the fate of these chelates postinjection. MATERIALS AND METHODS: Complexes of 6 DOTA-tetraamide ligands were prepared in which the nature of the amide substituent was systematically altered. The 6 ligands formed 3 series: a phosphonate series that included tri-cationic, mono-anionic, and poly-anionic complexes; a carboxylate series made up of a tri-cationic complex and a mono-anionic complex; and lastly, a tri-cationic complex with an aromatic amide substituent. These complexes were labeled with an appropriate radioisotope, either Gd or Lu, and the biodistribution profiles in rats recorded 2 hours postinjection. RESULTS: Biodistribution profiles were initially acquired at low doses to minimize adverse effects. All the complexes studied were found to be excreted primarily through the renal system, with the majority of the dose being found in the urine. None of the complexes exhibited substantial uptake by bone, liver, and spleen, except for a complex with 4 phosphonate groups that exhibited significant bone targeting capabilities. Increasing the dose of each complex to that of a typical MR contrast agent was found to render all 3 tri-cationic complexes studied here acutely toxic. In contrast, no ill effects were observed after administration of similar doses of the corresponding anionic complexes. CONCLUSIONS: The absence of uptake by the liver and spleen indicate that irrespective of the ligand structure and charge, these complexes are not prone to dissociation in vivo. This is in agreement with previously published work that indicates high kinetic inertness for this class of compounds. At low doses, all complexes were well tolerated; however, for applications that require higher doses, the structure and charge of the ligand becomes a fundamentally important parameter. The results reported herein demonstrate the importance of incorporating negatively charged groups on amide substituents if a DOTA-tetraamide complex is to be employed at high doses in vivo.


Assuntos
Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Compostos Heterocíclicos com 1 Anel/administração & dosagem , Compostos Heterocíclicos com 1 Anel/farmacocinética , Amidas/química , Animais , Meios de Contraste/efeitos adversos , Relação Dose-Resposta a Droga , Compostos Heterocíclicos com 1 Anel/efeitos adversos , Masculino , Taxa de Depuração Metabólica , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
14.
Chemistry ; 11(20): 5866-74, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16052656

RESUMO

The synthesis of a novel ligand, based on N-methyl-diethylenetriaminetetraacetate and containing a diphenylcyclohexyl serum albumin binding group (L1) is described and the coordination chemistry and biophysical properties of its Gd(III) complex Gd-L1 are reported. The Gd(III) complex of the diethylenetriaminepentaacetate analogue of the ligand described here (L2) is the MRI contrast agent MS-325. The effect of converting an acetate to a methyl group on metal-ligand stability, hydration number, water-exchange rate, relaxivity, and binding to the protein human serum albumin (HSA) is explored. The complex Gd-L1 has two coordinated water molecules in solution, that is, [Gd(L1)(H2O)2]2- as shown by D-band proton ENDOR spectroscopy and implied by 1H and 17O NMR relaxation rate measurements. The Gd-H(water) distance of the coordinated waters was found to be identical to that found for Gd-L2, 3.08 A. Loss of the acetate group destabilizes the Gd(III) complex by 1.7 log units (log K(ML) = 20.34) relative to the complex with L2. The affinity of Gd-L1 for HSA is essentially the same as that of Gd-L2. The water-exchange rate of the two coordinated waters on Gd-L1 (k(ex) = 4.4x10(5) s(-1)) is slowed by an order of magnitude relative to Gd-L2. As a result of this slow water-exchange rate, the observed proton relaxivity of Gd-L1 is much lower in a solution of HSA under physiological conditions (r1(obs) = 22.0 mM(-1) s(-1) for 0.1 mM Gd-L1 in 0.67 mM HSA, HEPES buffer, pH 7.4, 35 degrees C at 20 MHz) than that of Gd-L2 (r1(obs) = 41.5 mM(-1) s(-1)) measured under the same conditions. Despite having two exchangeable water molecules, slow water exchange limits the potential efficacy of Gd-L1 as an MRI contrast agent.


Assuntos
Gadolínio DTPA/química , Água/química , Meios de Contraste , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Ultrafiltração
15.
Inorg Chem ; 43(20): 6313-23, 2004 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-15446878

RESUMO

The manganese(II) ion has many favorable properties that lead to its potential use as an MRI contrast agent: high spin number, long electronic relaxation time, labile water exchange. The present work describes the design, synthesis, and evaluation of a novel Mn(II) complex (MnL1) based on EDTA and also contains a moiety that noncovalently binds the complex to serum albumin, the same moiety used in the gadolinium based contrast agent MS-325. Ultrafiltration albumin binding measurements (0.1 mM, pH 7.4, 37 degrees C) indicated that the complex binds well to plasma proteins (rabbit: 96 +/- 2% bound, human: 93 +/- 2% bound), and most likely to serum albumin (rabbit: 89 +/- 2% bound, human 98 +/- 2% bound). Observed relaxivities (+/- 5%) of the complex were measured (20 MHz, 37 degrees C, 0.1 mM, pH 7.4) in HEPES buffer (r(1) = 5.8 mM(-)(1) s(-)(1)), rabbit plasma (r(1) = 51 mM(-)(1) s(-)(1)), human plasma (r(1) = 46 mM(-)(1) s(-)(1)), 4.5% rabbit serum albumin (r(1) = 47 mM(-)(1) s(-)(1)), and 4.5% human serum albumin (r(1) = 48 mM(-)(1) s(-)(1)). The water exchange rate was near optimal for an MRI contrast agent (k(298) = 2.3 +/- 0.9 x 10(8) s(-)(1)). Variable temperature NMRD profiles indicated that the high relaxivity was due to slow tumbling of the albumin-bound complex and fast exchange of the inner sphere water. The concept of a high relaxivity Mn(II)-based contrast agent was validated by imaging at 1.5 T. In a rabbit model of carotid artery injury, MnL1 clearly delineated both arteries and veins while also distinguishing between healthy tissue and regions of vessel damage.


Assuntos
Meios de Contraste , Manganês/química , Compostos Organometálicos , Animais , Meios de Contraste/síntese química , Meios de Contraste/química , Meios de Contraste/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Humanos , Imageamento por Ressonância Magnética , Manganês/sangue , Conformação Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Compostos Organometálicos/farmacocinética , Coelhos , Albumina Sérica/química , Temperatura
16.
J Am Chem Soc ; 124(12): 3152-62, 2002 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-11902904

RESUMO

MS-325 is a novel blood pool contrast agent for magnetic resonance imaging currently undergoing clinical trials to assess blockage in arteries. MS-325 functions by binding to human serum albumin (HSA) in plasma. Binding to HSA serves to prolong plasma half-life, retain the agent in the blood pool, and increase the relaxation rate of water protons in plasma. Ultrafiltration studies with a 5 kDa molecular weight cutoff filter show that MS-325 binds to HSA with stepwise stoichiometric affinity constants (mM(-1)) of K(a1) = 11.0 +/- 2.7, K(a2) = 0.84 +/- 0.16, K(a3) = 0.26 +/- 0.14, and K(a4) = 0.43 +/- 0.24. Under the conditions 0.1 mM MS-325, 4.5% HSA, pH 7.4 (phosphate-buffered saline), and 37 degrees C, 88 +/- 2% of MS-325 is bound to albumin. Fluorescent probe displacement studies show that MS-325 can displace dansyl sarcosine and dansyl-L-asparagine from HSA with inhibition constants (K(i)) of 85 +/- 3 microM and 1500 +/- 850 microM, respectively; however, MS-325 is unable to displace warfarin. These results suggest that MS-325 binds primarily to site II on HSA. The relaxivity of MS-325 when bound to HSA is shown to be site dependent. The Eu(III) analogue of MS-325 is shown to contain one inner-sphere water molecule in the presence and in the absence of HSA. The synthesis of an MS-325 analogue, 5, containing no inner-sphere water molecules is described. Compound 5 is used to estimate the contribution to relaxivity from the outer-sphere water molecules surrounding MS-325. The high relaxivity of MS-325 bound to HSA is primarily because of a 60-100-fold increase in the rotational correlation time of the molecule upon binding (tau(R) = 10.1 +/- 2.6 ns bound vs 115 ps free). Analysis of the nuclear magnetic relaxation dispersion (T(1) and T(2)) profiles also suggests a decrease in the electronic relaxation rate (1/T(1e) at 20 MHz = 2.0 x 10(8) s(-1) bound vs 1.1 x 10(9) s(-1) free) and an increase in the inner-sphere water residency time (tau(m) = 170 +/- 40 ns bound vs 69 +/- 20 ns free).


Assuntos
Compostos Organometálicos/química , Albumina Sérica/química , Sítios de Ligação , Ligação Competitiva , Meios de Contraste/química , Meios de Contraste/metabolismo , Gadolínio , Humanos , Cinética , Imageamento por Ressonância Magnética , Compostos Organometálicos/metabolismo , Ligação Proteica , Prótons , Albumina Sérica/metabolismo , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA