Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 6: 33504, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27633857

RESUMO

BCL-2-associated athanogene-1 (BAG-1) is expressed by osteoblast-lineage cells; early embryonic lethality in Bag-1 null mice, however, has limited the investigation of BAG-1 function in osteoblast development. In the present study, bone morphogenetic protein-2/BMP-2-directed osteogenic differentiation of bone marrow stromal cells (BMSCs) of Bag-1(+/-) (heterozygous) female mice was decreased significantly. Genes crucial for osteogenic differentiation, bone matrix formation and mineralisation were expressed at significantly lower levels in cultures of Bag-1(+/-) BMSCs supplemented with BMP-2, while genes with roles in inhibition of BMP-2-directed osteoblastogenesis were significantly upregulated. 17-ß-estradiol (E2) enhanced responsiveness of BMSCs of wild-type and Bag-1(+/-) mice to BMP-2, and promoted robust BMP-2-stimulated osteogenic differentiation of BMSCs. BAG-1 can modulate cellular responses to E2 by regulating the establishment of functional estrogen receptors (ERs), crucially, via its interaction with heat shock proteins (HSC70/HSP70). Inhibition of BAG-1 binding to HSC70 by the small-molecule chemical inhibitor, Thioflavin-S, and a short peptide derived from the C-terminal BAG domain, which mediates binding with the ATPase domain of HSC70, resulted in significant downregulation of E2/ER-facilitated BMP-2-directed osteogenic differentiation of BMSCs. These studies demonstrate for the first time the significance of BAG-1-mediated protein-protein interactions, specifically, BAG-1-regulated activation of ER by HSC70, in modulation of E2-facilitated BMP-2-directed osteoblast development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzotiazóis , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , DNA/metabolismo , Proteínas de Ligação a DNA/química , Estrogênios/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSC70/metabolismo , Haploinsuficiência/efeitos dos fármacos , Heterozigoto , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Peptídeos/farmacologia , Receptores de Estrogênio/metabolismo , Tiazóis/metabolismo , Fatores de Transcrição/química
2.
J Tissue Eng ; 5: 2041731414551763, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383172

RESUMO

Stro-1 has proved an efficacious marker for enrichment of skeletal stem and progenitor cells although isolated populations remain heterogeneous, exhibiting variable colony-forming efficiency and osteogenic differentiation potential. The emerging findings that skeletal stem cells originate from adventitial reticular cells have brought two further markers to the fore including CD146 and CD105 (both primarily endothelial and perivascular). This study has compared CD146-, CD105- and Stro-1 (individual and in combination)-enriched human bone marrow stromal cell subsets and assessed whether these endothelial/perivascular markers offer further selection over conventional Stro-1. Fluorescent cell sorting quantification showed that CD146 and CD105 both targeted smaller (2.22% ± 0.59% and 6.94% ± 1.34%, respectively) and potentially different human bone marrow stromal cell fractions compared to Stro-1 (16.29% ± 0.78%). CD146+, but not CD105+, cells exhibited similar alkaline phosphatase-positive colony-forming efficiency in vitro and collagen/proteoglycan deposition in vivo to Stro-1+ cells. Molecular analysis of a number of select osteogenic and potential osteo-predictive genes including ALP, CADM1, CLEC3B, DCN, LOXL4, OPN, POSTN and SATB2 showed Stro-1+ and CD146+ populations possessed similar expression profiles. A discrete human bone marrow stromal cell fraction (2.04% ± 0.41%) exhibited positive immuno-labelling for both Stro-1 and CD146. The data presented here show that CD146+ populations are comparable but not superior to Stro-1+ populations. However, this study demonstrates the critical need for new candidate markers with which to isolate homogeneous skeletal stem cell populations or skeletal stem cell populations which exhibit homogeneous in vitro/in vivo characteristics, for implementation within tissue engineering and regenerative medicine strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA